Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
From the perspective of ensuring life safety, combined with the advantages of high-speed time response and energy conservation of white light emitting diodes (LEDs), the visible light indoor positioning algorithm based on fire safety is proposed in the paper. First, the model is designed which needs three LED lights arranged in a straight line and positioned in the geographically north direction on the top of the model. Then, the proposed algorithm is discussed and analyzed when the camera is located at the center of the model and facing north, when the camera is located at the center of the model and the angle is rotated, and when the camera is located at any position of the model, respectively. It can accurately calculate the current position of the camera, its response speed is fast and the positioning accuracy is high. Furthermore, this paper also verifies the practicability and reliability of the algorithm by designing the visible light indoor positioning system based on fire safety rescue in natural environment and smoke environment. The experimental results show that the positioning error does not exceed 0.70 cm in smoke environment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
209--222
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
autor
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
autor
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
Bibliografia
- [1] LUO J., FAN L., LI H., Indoor positioning systems based on visible light communication: state of the art, IEEE Communications Surveys and Tutorials 19(4), 2017, pp. 2871–2893, DOI:10.1109/COMST.2017.2743228.
- [2] GUAN W., WU Y., WEN S., CHEN Y., CHEN H., Indoor positioning technology of visible light communication based on CDMA modulation, Acta Optica Sinica 36(11), 2016, article 1106006.
- [3] XU H., DING Y., LI P., WANG R., LI Y., An RFID indoor positioning algorithm based on Bayesian probability and K-nearest neighbor, Sensors 17(8), 2017, article 1806, DOI:10.3390/s17081806.
- [4] XU H., WU M., LI P., ZHU F., WANG R., An RFID indoor positioning algorithm based on support vector regression, Sensors 18(5), 2018, article 1504, DOI:10.3390/s18051504.
- [5] JUNG S.-H., LEE G., HAN D., Methods and tools to construct a global indoor positioning system, IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(6), 2018, pp. 906–919, DOI:10.1109/TSMC.2016.2626797.
- [6] YANG D., XU B., RAO K., SHENG W., Passive infrared (PIR)-based indoor position tracking for smart homes using accessibility maps and A-star algorithm, Sensors 18(2), 2018, article 332, DOI:10.3390/s18020332.
- [7] NOH Y., YAMAGUCHI H., LEE U., Infrastructure-free collaborative indoor positioning scheme for time-critical team operations, IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(3),2018, pp. 418–432, DOI:10.1109/TSMC.2016.2615652.
- [8] GU Z., GUO W., LI C., ZHU X., GUO T., An adaptive method for switching between pedestrian/car indoor positioning algorithms based on multilayer time sequences, Sensors 18(3), 2018, article 711, DOI:10.3390/s18030711.
- [9] PENG Q., GUAN W., WU Y., CAI Y., XIE C., WANG P., Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication, Optical Engineering 57(1), 2018, article 016101, DOI:10.1117/1.OE.57.1.016101.
- [10] ZHANG M., LI F., GUAN W., Y. WU, XIE C., PENG Q., LIU X., A three-dimensional indoor positioning technique based on visible light communication using chaotic particle swarm optimization algorithm, Optik 165, 2018, pp. 54–73, DOI:10.1016/j.ijleo.2018.03.120.
- [11] KESKIN M.F., SEZER A.D., GEZICI S., Localization via visible light systems, Proceedings of the IEEE 106(6), 2018, pp. 1063–1088, DOI:10.1109/JPROC.2018.2823500.
- [12] HO S.-W., SAED A.A., LAI L., SUNG C.W., Coding and bounds for channel estimation in visible light communications and positioning, IEEE Journal on Selected Areas in Communications 36(1), 2018,pp. 34–44, DOI:10.1109/JSAC.2017.2774718.
- [13] CHIODO M., GIUSTO P., JURECSKA A., HSIEH H.C., SANGIOVANNI-VINCENTELLI A., LAVAGNO L., Hard-ware-software code sign of embedded systems, IEEE Micro 14(4), 1994, pp. 26–36, DOI:10.1109/40.296155.
- [14] MOULY M., PAUTET M.-B., The GSM System for Mobile Communications, Telecom Publishing, 1992.
- [15] CAO N., NASIR S.B., SEN S., RAYCHOWDHURY A., Self-optimizing IoT wireless video sensor node within-situ data analytics and context-driven energy-aware real-time adaptation, IEEE Transactions on Circuits and Systems I: Regular Papers 64(9), 2017, pp. 2470–2480, DOI:10.1109/TCSI.2017.2716358.
- [16] SAUVOLA J., PIETIKÄINEN M., Adaptive document image binarization, Pattern Recognition 33(2), 2000, pp. 225–236, DOI:10.1016/S0031-3203(99)00055-2.
- [17] XU Z.-X., CHAN Y.-H., Improving reversible color-to-gray scale conversion with halftoning, Signal Processing: Image Communication 52, 2017, pp. 111–123, DOI:10.1016/j.image.2016.12.005.
- [18] ZHU A., QI X., FAN T., GU Z., LV Q., YE D., HUANGFU J., SUN Y., ZHU W., RAN L., Indoor localization for passive moving objects based on a redundant SIMO radar sensor, IEEE Journal on Emerging and Selected Topics in Circuits and Systems 8(2), 2018, pp. 271–279, DOI:10.1109/JETCAS.2018.2798584.
- [19] ZAFAR F., BAKAUL M., PARTHIBAN R., Laser-diode-based visible light communication: toward gigabit class communication, IEEE Communications Magazine 55(2), 2017, pp. 144–151, DOI:10.1109/MCOM.2017.1500672CM.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bd436f6-cdb4-44b5-a399-25403f327c8f