PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementing 4D seismic inversion based on Linear Programming techniques for CO2 monitoring at the Sleipner field CCS site in the North Sea, Norway

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article provides a comprehensive analysis of CO2 injection monitoring in the Sleipner Field. Ensuring the safe storage and containment of CO2 in geological formations or assigned storage sites, especially in the carbon capture and storage (CCS) projects. In this study, a seismic inversion method incorporating linear programming sparse spike inversion was employed to observe and analyze the CO2 plume in the Sleipner field, Norway. This approach enhances the understanding of the dynamics and behavior of the CO2 injection, providing valuable insights into the monitoring and assessment of CCS operations in the Sleipner field. The foundational dataset includes 3D post-stack seismic data from the year 1994, with special emphasis on the monitoring data collected in 1999, following four years of CO2 sequestration. The analysis utilized synthetic data to investigate alterations in seismic amplitude, highlighting that amplitude variations were more prominent compared to variations in velocity and density. The findings highlight noticeable shifts in P-wave velocity, signifying a significant 29% reduction, with the most substantial decrease occurring within the 0 to 30% CO2 saturation range. Correspondingly, density changes align with trace variations, demonstrating only a 2-3% reduction in density as gas saturation increases from 0 to 30%. Beyond 30% saturation, density exhibits a further decrease of 30%. The traces collectively reveal a consistent trend, showcasing a 32% reduction in impedance as CO2 saturation levels rise. Through the cross-equalization process, it was observed that the initial data repeatability was low, indicated by a normalized root mean square (NRMS) value of 0.6508. However, significant improvement was achieved, bringing the NRMS value to a more satisfactory level of 0.5581. This improvement underscored the alignment of features both above and below the reservoir, underscoring the efficacy of the cross-equalization technique. The outcomes of the 4D inversion provided insights into the distribution of CO2 within the reservoir, revealing upward migration. Importantly, the results confirmed the secure storage of CO2 within the reservoir, affirming the integrity of the overlying cap layer.
Czasopismo
Rocznik
Strony
271--293
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
autor
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
  • Department of Earth Sciences, Indian Institute of Technology, Bombay, Mumbai 400076, India
autor
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
autor
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
autor
  • Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
Bibliografia
  • 1. Ahmed FM, Mohammed DBS (2023) Feasibility of breast cancer detection through a convolutional neural network in mammographs. Tamjeed J Healthcare Eng Sci Technol 1(2):36-43
  • 2. Ammah ANA (2012) Applying time-lapse seismic inversion in reservoir management: a case study of the Norne Field (Master’s thesis, Institutt for petroleumsteknologi og anvendt geofysikk).
  • 3. Arts R, Eiken O, Chadwick A, Zweigel P, Van der Meer L, Zinszner B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29(9-10):1383-1392
  • 4. Bickle M, Chadwick A, Huppert HE, Hallworth M, Lyle S (2007) Modelling carbon dioxide accumulation at Sleipner: Implications for underground carbon storage. Earth Planet Sci Lett 255(1-2):164-176
  • 5. Boait FC, White NJ, Bickle MJ, Chadwick RA, Neufeld JA, Huppert HE (2012) Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. J Geophys Res: Solid Earth, 117(B3).
  • 6. Burnison SA, Bosshart NW, Salako O, Reed S, Hamling JA, Gorecki CD (2017) 4-D seismic monitoring of injected CO2 enhances geological interpretation, reservoir simulation, and production operations. Energy Procedia 114:2748-2759
  • 7. Cavanagh A (2013) Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia 37:3529-3545
  • 8. Cavanagh AJ, Haszeldine RS (2014) The Sleipner storage site: capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. Int J Greenhouse Gas Control 21:101-112
  • 9. Ch Magid H, Saad Rasheed H, Adnan Al-Wardy R (2023) Effect of doping with zinc oxide on the structural, surface, and optical properties of titanium dioxide thin films. Samarra J Pure Appl Sci 5(2):118-129
  • 10. Chadwick RA, Arts R, Eiken O, Kirby GA, Lindeberg E, Zweigel P (2004) 4D seismic imaging of an injected C02 plume at the Sleipner field, Central North Sea. Geol Soc, London, Memoirs 29(1):311-320
  • 11. Chadwick RA, Arts R, Eiken O (2005) 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In Geological Society, London, Petroleum Geology Conference series (Vol. 6, No. 1, pp 1385-1399). The Geological Society of London.
  • 12. Chadwick RA, Noy D, Arts R, Eiken O (2009) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1(1):2103-2110
  • 13. Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, Buddensiek ML, Dillen M, Nickel M, Lima AL, Arts R (2010) Quantitative analysis of time-lapse seismic moni¬toring data at the Sleipner CO2 storage operation. Lead Edge 29(2):170-177
  • 14. Clochard V, Delepine N, Labat K, Ricarte P (2010) CO2 plume imaging using 3D pre-stack stratigraphic inversion: A case study on the Sleipner field. First Break, 28(1).
  • 15. Delepine N, Clochard V, Labat K, Ricarte P (2011) Post-stack stratigraphic inversion workflow applied to carbon dioxide storage: application to the saline aquifer of Sleipner field. Geophys Prospect 59(1):132-144
  • 16. Ditkof JN (2013) Time-lapse seismic monitoring for enhanced oil recovery and carbon capture and storage field site at Cranfield field. Thesis, University of Texas at Austin, Mississippi. M.Sc
  • 17. Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, H0ier L (2011) Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Sn0hvit. Energy Procedia 4:5541-5548
  • 18. Enbeyle W, Hamad AA, Al-Obeidi AS, Abebaw S, Belay A, Markos A, Derebew B (2022) Trend analysis and prediction on water consumption in southwestern Ethiopia. J Nanomater 2022:1-7
  • 19. Evensen AK, Landr0 M (2010) Time-lapse tomographic inversion using a Gaussian parameterization of the velocity changes. Geophysics 75(4):U29-U38
  • 20. Furre AK, Eiken O (2014). Repeated time-lapse seismic data quantify amplitude tuning at the Sleipner CO2 injection site. In 76th EAGE Conference and Exhibition 2014 (Vol. 2014, No. 1, pp 1-5). European Association of Geoscientists & Engineers.
  • 21. Gasperikova E, Appriou D, Bonneville A, Feng Z, Huang L, Gao K, Yang X, Daley T (2022) Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. Int J Greenhouse Gas Control 114:103585
  • 22. Ghosh R, Sen MK, Vedanti N (2015) Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling. Int J Greenhouse Gas Control 32:147-158
  • 23. Gregersen U, Michelsen O, S0rensen JC (1997) Stratigraphy and facies distribution of the Utsira Formation and the Pliocene sequences in the northern North Sea. Mar Pet Geol 14(7-8):893-914
  • 24. Kushwaha PK, Maurya SP, Rai P, Singh NP (2021) Estimation of subsurface rock properties from seismic inversion and geo-statistical methods over F3-block, Netherland. Explor Geophys 52:258-272
  • 25. Levy S, Fullagar PK (1981) Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46(9):1235-1243
  • 26. Li B, Li YE (2021) Neural network-based CO2 interpretation from 4D sleipner seismic images. Journal of Geophysical Research: Solid Earth 126(12):e2021JB022524
  • 27. Maurya SP, Singh NP (2018) Application of LP and ML sparse spike inversion with probabilistic neural network to classify reservoir facies distribution-A case study from the Blackfoot field, Canada. J Appl Geophys 159:511-521
  • 28. Maurya SP, Singh KH, Singh NP (2019) Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data. Marine Geophys Res 40:1-21
  • 29. Maurya SP, Singh NP, Singh KH (2020) Seismic inversion methods: a practical approach, vol 1. Springer, Cham, Switzerland
  • 30. Maurya SP, Singh R, Mahadasu P, Singh UP, Singh KH, Singh R, Kumar R, Kushwaha PK (2023) Qualitative and quantitative comparison of the genetic and hybrid genetic algorithm to estimate acoustic impedance from post-stack seismic data of Blackfoot field. Canada Geophysical Journal International 233(2):932-949
  • 31. Maurya SP, Singh KH (2015) LP and ML sparse spike inversion for reservoir characterization-a case study from Blackfoot area, Alberta, Canada. In 77th EAGE Conference and Exhibition 2015 (Vol. 2015, No. 1, pp 1-5). European Association of Geoscientists & Engineers
  • 32. Meadows MA, Cole SP (2013) 4D seismic modeling and CO2 pressure-saturation inversion at the Weyburn Field, Saskatchewan. Int J Greenhouse Gas Control 16:S103-S117
  • 33. Nguyen PK, Nam MJ, Park C (2015) A review on time-lapse seismic data processing and interpretation. Geosci J 19:375-392
  • 34. Oldenburg DW, Scheuer T, Levy S (1983) Recovery of the acoustic impedance from reflection seismograms. Geophysics 48(10):1318-1337
  • 35. Pangestu BA, Lubis M (2023) 4-dimensional seismic interpretation to monitor CO2 injection in carbon capture & storage project of Sleipner field, North Sea, Norway using inversion method. J Earth Energy Eng 12(2s):53-66
  • 36. Pevzner R, Shulakova V, Kepic A, Urosevic M (2011) Repeatability analysis of land time-lapse seismic data: CO2CRC Otway pilot project case study. Geophys Prospect 59(1):66-77
  • 37. QueiBer M, Singh SC (2013) Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner. Geophys Prospect 61(3):537-555
  • 38. Rabben TE, Ursin B (2011) AVA inversion of the top Utsira Sand reflection at the Sleipner field. Geophysics 76(3):C53-C63
  • 39. Raknes EB, Arntsen B, Weibull W (2015) Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophys J Int 202(3):1877-1894
  • 40. Rappin D, Trinh PT (2022) 4D petroelastic model calibration using time-lapse seismic signal. Lead Edge 41(12):824-831
  • 41. Rickett J, Lumley DE (1998) A cross-equalization processing flow for off-the-shelf 4D seismic data. In SEG Technical Program Expanded Abstracts 1998 (pp 16-19). Society of Exploration Geophysicists
  • 42. Rickett JE, Lumley DE (2001) Cross-equalization data processing for time-lapse seismic reservoir monitoring: a case study from the Gulf of Mexico. Geophysics 66(4):1015-1025
  • 43. Roach LA, White DJ, Roberts B, Angus D (2017) Initial 4D seismic results after CO2 injection start-up at the Aquistore storage site. Geophysics 82(3):B95-B107
  • 44. Roach LA, White DJ, Roberts B (2015) Assessment of 4D seismic repeatability and CO2 detection limits using a sparse permanent land array at the Aquistore CO2 storage site. Geophysics 80(2):WA1-WA13
  • 45. Shihab S, Shrooq Bahjat Smeein S, Delphi M (2023) Operational spline scaling functions method for solving optimal control problems. Samarra J Pure Appl Sci 5(2):160-172
  • 46. Shulakova V, Pevzner R, Glubokovskikh SM, Popik D, Tertyshnikov KV (2017). Time-lapse seismic data inversion for CO2 sequestration CO2CRC Otway project. In 79th EAGE Conference and Exhibition 2017 (Vol. 2017, No. 1, pp 1-5). European Association of Geoscientists & Engineers.
  • 47. Singh V, Cavanagh A, Hansen H, Nazarian B, Iding M, Ringrose P (2010) September. Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway. In SPE Annual Technical Conference and Exhibition? (pp SPE-134891). SPE.
  • 48. Suhl LM, Suhl UH (1993) A fast LU update for linear programming. Ann Oper Res 43(1):33-47
  • 49. Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29(9-10):1361-1369
  • 50. Urosevic M, Pevzner R, Shulakova V, Kepic A, Caspari E, Sharma S (2011) Seismic monitoring of CO2 injection into a depleted gas reservoir-Otway Basin Pilot project, Australia. Energy Procedia 4:3550-3557
  • 51. Wang Z, Harbert WP, Dilmore RM, Huang L (2018) Modeling of timelapse seismic monitoring using CO2 leakage simulations for a model CO2 storage site with realistic geology: application in assessment of early leak-detection capabilities. Int J Greenhouse Gas Control 76:39-52
  • 52. Williams G, Chadwick A (2012) Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection plume. Geophysics 77(6):R245-R256
  • 53. Younis YS, Ali AH, Alhafidhb OKS, Yahia WB, Alazzam MB, Hamad AA, Meraf Z (2022) Early diagnosis of breast cancer using image processing techniques. J Nanomater 2022:1-6
  • 54. Zweigel P, Arts R, Lothe AE, Lindeberg EB (2004) Reservoir geology of the Utsira formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea). Geol Soc, London, Spec Publ 233(1):165-180
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bd0b1ff-a694-41b8-a2ed-b0014f8b3def
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.