Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the present work is to discuss the effect of varying thermal conductivity in a semiconducting medium under photothermal theory. An infinite elastic half-space is overlying the infinite semiconducting medium, and a constant mechanical force is applied along the interface. The normal mode analysis method is applied to find the analytic components of displacement, stress, carrier density and temperature distribution. It was found that all physical quantities are affected by variable thermal conductivity. The novelty of the paper lies in the fact that no such a problem of variable thermal conductivity has been discussed by any researcher so far.
Czasopismo
Rocznik
Tom
Strony
159--166
Opis fizyczny
Bibliogr. 31 poz., wykr., wz.
Twórcy
autor
- Department of Mathematics, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
autor
- I.G.N College, Ladwa, Haryana, India
Bibliografia
- [1] Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S., & Whinnery, J.R. (1965). Long-transient effects in lasers with inserted liquid samples. Journal of Applied Physics, 36(1), 3‒8. doi:10.1063/1.1713919
- [2] Kreuzer, L.B. (1971). Ultralow gas concentration infrared absorption spectroscopy. Journal of Applied Physics, 42(7), 2934– 2943. doi: 10.1063/1.1660651
- [3] Mandelis, A. (1997). Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Optical Engineering (Redondo Beach, Calif.), 36(2), 459–468. doi: 10.1117/1.601217
- [4] Todorović, D.M. (2005). Plasmaelastic and thermoelastic waves in semiconductors. Journal de Physique IV (Proceedings), 125, 551–555. doi: 10.1051/jp4:2005125127
- [5] Song, Y.Q., Bai, J.T., & Ren, Z.Y. (2012). Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mechanica, 223, 1545–1557.doi: 10.1007/s00707-012-0677-1
- [6] Othman, M.I., Tantawi, R.S., & Eraki, E.E. (2016). Propagation of the photothermal waves in a semiconducting medium under LS theory. Journal of Thermal Stresses, 39(11), 1419‒1427. doi:10.1080/01495739.2016.1216063
- [7] Ailawalia, P., Sachdeva, S. K., Singh Pathania, D.S., & Hong Wu, Y. (2017). Effect of mechanical force along the interface of semi-infinite semiconducting medium and thermoelastic micropolar cubic crystal. Cogent Mathematics, 4(1), 1347991. doi:10.1080/23311835.2017.1347991
- [8] Alzahrani, F.S., & Abbas, I.A. (2018). Photo-thermoelastic interactions in a 2D semiconducting medium. European Physical Journal Plus, 133, 505. doi: 10.1140/epjp/i2018-12285-5
- [9] Hobiny, A. (2020). Effect of the hyperbolic two-temperature model without energy dissipation on photo-thermal interaction in a semi-conducting medium. Results in Physics, 18, 103167. doi:10.1016/j.rinp.2020.103167
- [10] Saeed, A.M., Lotfy, K., El-Bary, A., & Ahmed, M.H. (2021). Thermoelastic with photogenerated model of rotating microstretch semiconductor medium under the influence of initial stress. Results in Physics, 31, 104967. doi: 10.1016/j.rinp.2021.104967
- [11] Hilal, M.I.M. (2022). Photothermal excitation and Thomson impact in a semiconductor microelongated thermoelastic medium with microtemperatures in the gravity. Zeitschrift Fur Angewandte Mathematik Und Mechanik, 102(12), e202200175. doi:10.1002/zamm.202200175
- [12] Kaur, I., Singh, K., & Craciun, E.M. (2022). A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore–Gibson–Thompson heat transfer under the Hall effect. Mathematics, 10(14), 2386. doi: 10.3390/math10142386
- [13] Lotfy, K., Ahmed, A., El-Bary, A., & Tantawi, R.S. (2023). A novel stochastic model of the photo-thermoelasticity theory of the non-local excited semiconductor medium. Silicon, 15, 437–450. doi: 10.1007/s12633-022-02021-x
- [14] Azhar, E., Ali, H., Jahangir, A., & Anya, A.I. (2023). Effect of Hall current on reflection phenomenon of magneto-thermoelastic waves in a non-local semiconducting solid. Waves in Random and Complex Media, 1–18. doi: 10.1080/17455030.2023.2182146
- [15] Youssef, H.M., & El-Bary, A.A. (2006). Thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity. Mathematical Problems in Engineering, 2006, 87940, 1–14. doi: 10.1155/mpe/2006/87940
- [16] Ezzat, M.A., & Youssef, H.M. (2009). State space approach for conducting magneto-thermoelastic medium with variable electrical and thermal conductivity subjected to ramp-type heating. Journal of Thermal Stresses, 32(4), 414–427. doi: 10.1080/01495730802637233
- [17] Sherief, H., & Abd El-Latief, A.M. (2013). Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. International Journal of Mechanical Sciences, 74, 185–189. doi: 10.1016/j.ijmecsci.2013.05.016
- [18] Zenkour, A.M., & Abbas, I.A. (2014). Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. International Journal of Structural Stability and Dynamics, 14(7), 1450025. doi: 10.1142/S0219455414500254
- [19] Yasein, M., Mabrouk, N., Lotfy, K., & EL-Bary, A.A. (2019). The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type. Results in Physics, 15, 102766. doi: 10.1016/j.rinp.2019.102766
- [20] Abbas, I., Hobiny, A., & Marin, M. (2020). Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. Journal of Taibah University for Science, 14(1), 1369–1376. doi: 10.1080/16583655.2020.1824465
- [21] Alzahrani, F., Hobiny, A., Abbas, I., & Marin, M. (2020). An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry, 12(5), 848. doi: 10.3390/sym12050848
- [22] Marin, M., Hobiny, A., & Abbas, I. (2021). The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics, 9(14), 1606. doi: 10.3390/math9141606
- [23] Lotfy, K., & El-Bary, A. (2022). Elastic-thermal-diffusion model with a mechanical ramp type and variable thermal conductivity of electrons–holes semiconductor interaction. Waves in Random and Complex Media, 1–20. doi: 10.1080/17455030.2022.2078521
- [24] Hobiny, A., & Abbas, I. (2023). Generalized thermoelastic interaction in orthotropic media under variable thermal conductivity using the finite element method. Mathematics, 11(4), 955. doi:10.3390/math11040955
- [25] Kumar, S., Kadian, A., & Kalkal, K.K. (2023). Thermoelastic interactions in a rotational medium having variable thermal conductivity and diffusivity with gravitational effect. Waves in Random and Complex Media, 1-22. doi: 10.1080/17455030.2023.2205964
- [26] El-Sapa, S., El-Bary, A.A., & Lotfy, K. (2023). Effect of an excited non-local microelongated semiconductor with variable thermal conductivity on the propagation of photo-thermoelastic waves. Optical and Quantum Electronics, 55(6), 569. doi:10.1007/s11082-023-04836-3
- [27] Lotfy, K. (2017). Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress. Waves in Random and Complex Media, 27(3), 482–501. doi: 10.1080/17455030.2016.1267416
- [28] Song, Y., Bai, J., & Ren, Z. (2012). Reflection of plane waves in a semiconducting medium under photothermal theory. International Journal of Thermophysics, 33, 1270–1287. doi: 10.1007/s10765-012-1239-4
- [29] Ewing, W.M., Jardetzky, W.S., Press, F., & Beiser, A. (1957). Elastic Waves in Layered Media. McGraw-Hill.
- [30] Lotfy, K. (2019). Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. Silicon, 11, 1863–1873. doi: 10.1007/s12633-018-0005-z
- [31] Bullen, K.E. (1963). An Introduction of the Theory of Seismology. Cambridge University Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bd04123-20df-4528-9465-327cd3357611
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.