PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Approximate controllability of second order infinite dimensional systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper approximate controllability of second order infinite dimensional system with damping is considered. Applying linear operators in Hilbert spaces general mathematical model of second order dynamical systems with damping is presented. Next, using functional analysis methods and concepts, specially spectral methods and theory of unbounded linear operators, necessary and sufficient conditions for approximate controllability are formulated and proved. General result may be used in approximate controllability verification of second order dynamical system using known conditions for approximate controllability of first order system. As illustrative example using Green function approach approximate controllability of distributed dynamical system is also discussed.
Rocznik
Strony
165--184
Opis fizyczny
Bibliogr. 35 poz., wory
Twórcy
autor
  • Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland
  • Institute of Mechanics, NAS of Armenia
Bibliografia
  • [1] A. Babiarz, A. Czornik, J. Klamka, and M. Niezabitowski: The selected problems of controllability of discrete-time switched linear systems with constrained switching rule, Bulletin of the Polish Academy of Sciences. Technical Sciences, 63(3), (2015), 657-666.
  • [2] A. Bensoussan, G. Da Prato, M. Delfour, and S. K. Mitter: Representation and Control of Infinite Dimensional Systems. I and II Birkhauser, Boston, 1993.
  • [3] G. Chen and D. L. Russell: A mathematical model for linear elastic systems with structural damping, Quarterly of Applied Mathematics, XXXIX(4), (1982), 433-454.
  • [4] S. Chen and R. Triggiani: Gevrey class semigroup arising from elastic systems with gentle dissipation: the case 0 < α < 1/2 , Proceedings of the American Mathematical Society, 100(2), (1990), 401-415.
  • [5] S. Chen and R. Triggiani: Characterization of domains of fractional powers of certain operators arising in elastic systems and applications, Journal of Differential Equations, 88(2), (1990), 279-293.
  • [6] S. Chen and R. Triggiani: Proof of extension of two conjectures on structural damping for elastic systems. The case 1/2 ≤ α ≤ 1, Pacific Journal of Mathematics, 136(1), (1989), 15-55.
  • [7] sc F. Huang: On the mathematical model for linear elastic systems with analytic damping, SIAM Journal on Control and Optimization, 26(3), (1988), 714-724.
  • [8] J. Klamka: Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
  • [9] J. Klamka: Approximate controllability of second order dynamical systems, Applied Mathematics and Computer Science, 2(1), (1992), 135-146.
  • [10] J. Klamka: Constrained controllability of linear retarded dynamical systems, Applied Mathematics and Computer Science, 3(4), (1993), 647-672.
  • [11] J. Klamka: Controllability of dynamical systems - a survey, Archives of Control Sciences, 2(3/4), (1993), 281-307.
  • [12] J. Klamka: Controllability and Minimum Energy Control, Studies in Systems, Decision and Control, 162, 1-175, Springer Verlag, 2018.
  • [13] J. Klamka and As. Zh. Khurshudyan: Average controllability of heat equation in unbounded domain with random geometry and location of controls. The Green function approach, Archives of Control Systems, 29(4), (2019), 573-584.
  • [14] J. Klamka, J. Wyrwał, and R. Zawiski: On controllability of second order dynamical systems. A survey, Bulletin of the Polish Academy of Sciences. Technical Sciences, 65(3), (2017), 279-295.
  • [15] J. Klamka, A. Babiarz, and M. Niezabitowski: Banach fixed-point theorem in semilinear controllability problems - a survey, Bulletin of the Polish Academy of Sciences. Technical Sciences, 64(1), (2016), 21-35.
  • [16] J. Klamka, A. Babiarz, and M. Niezabitowski: Schauder’s fixed point theorem in approximate controllability problems, International Journal of Applied Mathematics and Computer Science (AMCS), 26(2), (2016), 26-275.
  • [17] T. Kobayashi: Frequency domain conditions of controllability and observability for distributed parameter systems with unbounded control and observation, International Journal of Systems Science, 23, (1992), 2369-2376.
  • [18] N. Kunimatsu and K. Ito: Stabilization of nonlinear distributed parameter vibratory systems,International Journal of Control, 48(6), (1988), 2389-2415.
  • [19] K. Narukawa: Admissible controllability of one-dimensional vibrating systems with constrained controls, SIAM Journal on Control and Optimization, 20(6), (1982), 770-782.
  • [20] K. Narukawa: Complete controllability of one-dimensional vibrating systems with bang-bang controls, SIAM Journal on Control and Optimization, 22(5), (1984), 788-804.
  • [21] B. Sikora and J. Klamka: Cone-type constrained relative controllability of semilinear fractional systems with delays, Kybernetika, 53(2), (2017), 370-381.
  • [22] B. Sikora and J. Klamka: Constrained controllability of fractional linear systems with delays in control, Systems and Control Letters, 106(1), (2017), 9-15.
  • [23] R. Triggiani: Controllability and observability in Banach space with bounded operators, SIAM Journal on Control and Optimization, 13(2), (1975), 462-491.
  • [24] R. Triggiani: On the lack of exact controllability for mild solutions in Banach space, Journal of Mathematical Analysis and Applications, 50(2), (1975), 438-446.
  • [25] R. Triggiani: Extensions of rank conditions for controllability and observability in Banach space and unbounded operators, SIAM Journal on Control and Optimization, 14(2), (1976), 313-338.
  • [26] R. Triggiani: A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM Journal on Control and Optimization, 15(3), (1977), 407-411.
  • [27] R. Triggiani: On the relationship between first and second order controllable systems in Banach spaces, SIAM Journal on Control and Optimization, 16(6), (1978), 847-859.
  • [28] R. Triggiani and I. Lasiecka: Exact controllability and uniform stabilization of Kirchoff plates with boundary control only on ∆w|Σ and homogeneous boundary displacement, Journal of Differential Equations, 93 (1991), 62-101.
  • [29] J. Wyrwał: Simplified conditions for initial observability for infinitedimensional second-order damped dynamical systems, Journal of Mathematical Analysis and Applications, 478(1), (2019), 33-57.
  • [30] J. Wyrwał, R. Zawiski, M. Pawełczyk, and J. Klamka: Modelling of coupled vibro-acoustic interactions in an active casing for the purpose of control, Applied Mathematical Modelling, 50 (2017), 219-236.
  • [31] A. S. Avetisyan and As. Zh. Khurshudyan: Controllability of Dynamic Systems: The Green’s Function Approach, Cambridge Scholars Publishing, Cambridge, 2018.
  • [32] As. Zh. Khurshudyan: Distributed controllability of one-dimensional heat equation in unbounded domains: The Green’s function approach, Archives of Control Sciences, 2019, 29(1), (2019), 57-71.
  • [33] J. Klamka, A. S. Avetisyan, and As. Zh. Khurshudyan: Exact and approximate distributed controllability of the KdV and Boussinesq equations: The Green’s function approach, Archives of Control Sciences, 30(1), (2020), 153-169.
  • [34] M. Frasca and As. Zh. Khurshudyan: Green’s function for higher order nonlinear equations: Case studies for KdV and Boussinesq equations, International Journal of Modern Physics C, 29 (2018), 1850104, 13 pages.
  • [35] As. Zh. Khurshudyan: An identity for the Heaviside function and its application in representation of nonlinear Green’s function, Computational and Applied Mathematics, 39(32), (2020).
Uwagi
1. The work of the first author is supported by National Science Centre in Poland under grant: “Modelling, optimization and control for structural reduction of device noise”, DEC-2017/25/B/ST7/02236.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bcfb766-8ee1-4f24-b6c0-308dbf106196
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.