PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-energy, microtidal nearshore deposits and their provenance (Lower Miocene, Burdigalian/Eggenburgian, Alpine-Carpathian Foredeep, Lower Austria)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the Early Miocene (Early Burdigalian/Eggenburgian) marine transgression at the southeastern margin of the Bohemian Massif, gradual flooding occurred along a rocky coast on granitic bedrock of the Thaya Batholith under high-energy, wave-dominated, microtidal and mixed fair-weather and storm conditions. Deposits of the Burgschleinitz Formation overlie a basal unconformity above a subaerial weathered basement surface (transgressive erosional surface) and are interpreted as a transgressive systems tract. The deposits can be divided into four facies associations/depositional environments, i.e., upper-shoreface, foreshore, gravelly beach and backshore/lagoon. Two stages of transgression and successive overtopping of the basement, with different coastal physiographies, were documented. During the initial stage of transgression a barrier island system developed with relatively fine-grained deposits, reflecting the flooding of the distant parts of the Thaya Batholith with a relative flat basement morphology. The subsequent continuation of the transgression led to the flooding of the more proximal parts of the Thaya Batholith with a steeper relief and formation of a rocky shoreline with deposition of gravelly sedi- ments along palaeo-sea cliffs or wave-cut platforms. While gravel clasts of the deposits investigated originate directly from the underlying granites of the Thaya Batholith, provenance studies show that metamorphic rocks of the Moravian Superunit in the hinterland were the main source of sands. This distant source material was probably delivered mainly by small creeks and alluvial fans to the nearshore. Significant differences in heavy mineral composition of the same formation in the wider vi cinity indicate primarily local sources and rapid deposition with subordinate longshore transport, which may reflect a complex coastal palaeogeography. The Lower Miocene deposits of the Burgschleinitz Formation investigated are a rare example of ancient rocky shore deposits, which generally have low preservation potential in the geological record.
Rocznik
Strony
art. no. 33
Opis fizyczny
Bibliogr. 102 poz., fot., rys., tab., wykr.
Twórcy
  • Masaryk University, Department of Geological Sciences, Faculty of Science, Kotlářská 2, CZ- 611 37 Brno, Czech Republic
  • Geological Survey, Neulinggasse 38, A-1030 Wien, Austria
Bibliografia
  • 1. Allen, J.L., Johnson, C.L., 2011. Architecture and formation of transgressive-regressive cycles in marginal marine strata of the John Henry Member, Straight Cliffs Formation, Upper Cretaceous of Southern Utah, USA. Sedimentology, 58: 1486-1513.
  • 2. Aubrecht, R., Meres, Š., Sýkora, M., Mikus, T., 2009. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geologica Carpathica, 60: 463-483.
  • 3. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602-622.
  • 4. Bluck, B.J., 1967. Sedimentation of beach gravels: examples from South Wales. Journal of Sedimentary Petrology, 37: 128-156.
  • 5. Bluck, B.J., 1999. Clast assembling, bed-forms and structure in gravel beaches. Earth and Environmental Science Transactions of the Royal Society of Edinburg, 89: 291-323.
  • 6. Bluck, B.J., 2011. Structure of gravel beaches and their relationship to tidal range. Sedimentology, 58: 994-1006.
  • 7. Boyd, R., Dalrymple, R.W., Zaitlin, B.A., 1992. Classification of clastic coastal depositional environments. Sedimentary Geology, 80: 139-150.
  • 8. Burianek, D., Tomanova Petrova, P., Otava, J., 2012. Where do the Miocene sediments of the Brno region come from? (in Czech with English summary). Acta Musei Moraviae, Sciences Geology, 97: 153-156.
  • 9. Caironi, V., Colombo, A., Tunesi, A., Gritti, C., 2000. Chemical variations of zircon compared with morphological evolution during magmatic crystalization: an example from the Valle del Cervo Pluton (Western Alps). European Journal of Mineralogy, 12: 779-794.
  • 10. Cattaneo, A., Steel, R.J., 2003. Transgressive deposits: a review of their variability. Earth-Science Reviews, 62: 187-228.
  • 11. Chiocci, F.C., Clifton H.E., 1991. Gravel-filled gutter casts in nearshore facies-indicators of ancient shoreline trend. SEPM Special Publication, 46: 67-76.
  • 12. Clifton, H.E., 1981. Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California. Journal of Sedimentary Research, 51: 165-184.
  • 13. Clifton, H.E., 2006. A reexamination of facies models for clastic shorelines. SEPM Special Publication, 84: 293-338.
  • 14. Collins, D.S., Johnson, H.D., Allison, P.A., Guilpain, P., Damit, A.R., 2017. Coupled “storm-flood” depositional model: Application to the Miocene-Modern Baram Delta Province, north-west Borneo. Sedimentology, 64: 1203-1235.
  • 15. Collinson, J.D., Mountney, N. P., Thompson, D.B., 2006. Sedimentary Structures. 3rd ed., Terra Publishing, Harpenden.
  • 16. Čopjaková, R., 2007. The reflection of provenance changes in the psefitic and psamitic sedimentary fraction of the Myslejovice Formation (heavy mineral analysis) (in Czech). Ph.D. thesis, Masaryk University, Brno.
  • 17. Čopjaková, R., Sulovský, P., Otava, J., 2002. Comparison of the chemistry of detritic pyrope-almandine garnets of the Lulec Conglomerates with the chemistry of granulite garnets from the Czech Massif (in Czech). Geologicke vyzkumy na Morave a ve Slezku v roce 2001,9: 44-47.
  • 18. Corfu, F., Hanchar, J.M., Kinny, P., 2013. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 468-500.
  • 19. DeCelles, P.G., 1987. Variable preservation of Middle Tertiary, coarse-grained, nearshore to outer-shelf storm deposits in southern California. Journal of Sedimentary Petrology, 57: 250-264.
  • 20. Droser, M.L., Bottjer, D.J., 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research, 56: 558-559.
  • 21. Dumas, S., Arnott, R.W.C., 2006. Origin of hummocky and swaley cross-stratification - the controlling influence of unidirectional current strength and aggradation rate. Geology, 34: 1073-1076.
  • 22. Elliott, T., 1986. Siliciclastic shorelines. In: Sedimentary Environments and Facies (ed. H. G. Reading): 155-188. Blackwell Scientific Publications.
  • 23. Evans, J.E., Holm-Denoma, C.S., 2018. Processes and facies relationships in a Lower(?) Devonian rocky shoreline depositional environment, East Lime Creek Conglomerate, south-western Colorado, USA. The Depositional Record, 4: 133-156.
  • 24. Finger, F., Haunschmid, B., 1988. Die mikroskopischen Untersuchungen der akzessorischen Zirkone als Methode zur Klärung der Intrusionsfolge in Granitgebieten - eine Studie im nordöstlichen oberösterreichischen Moldanubikum. Jahrbuch der Geologischen Bundesanstalt, 131: 255-266.
  • 25. Folk, R.L., 1968. Petrology of Sedimentary Rocks. Austin, Texas, Hemphill's Bookstore.
  • 26. Folk, R.L., Ward, W., 1957. Brazos River bar: a study in the significance of grain-size parameters. Journal of Sedimentary Research, 27: 3-26.
  • 27. Force, E.R., 1980. The provenance of rutile. Journal of Sedimentary Research, 50: 485-488.
  • 28. Friedman, G.M., 1962. On sorti ng, sorti ng coefficients and the lognormality of the grain-size disfribufion of sandstones. The Journal of Geology, 70: 737-753.
  • 29. Garzanti, E., Resentini, A., Ando, S., Vezzoli, G., Pereira, A., Vermeesch, P., 2015. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology, 62: 971-996.
  • 30. Girty, G.H., Marsh, J., Meltzner, A., McConnell, J.R., Nygren, D., Nygren, J., Prince, G.M., Randall, K., Johnson, D., Heitman, B., Nielsen, J., 2003. Assessing changes in elemental mass as a result of chemical weathering of granodiorite in a Mediterranean (hot summer) climate. Journal of Sedimentary Research, 73: 434-443.
  • 31. Hart, B.S., Plint, A.G., 1989. Gravelly shoreface deposits: a comparison of modern and ancient facies sequences. Sedimentology, 36: 551-557.
  • 32. Hart, B.S., Plint, A.G., 1995. Gravelly shoreface and beachface deposits. IAS Special Publication, 22: 75-99.
  • 33. Hartley, A.J., Jolley E.J., 1999. Unusual coarse, clastic, wave-dominated shoreface deposits, Pliocene to Middle Pleistocene nortern Chile: implications for coastal facies analysis. Journal of Sedimentary Research, 69: 105-114.
  • 34. Hoppe, G., 1966. Zirkone aus Granuliten. Berichte der Deutschen Gesellschaft für Geologische Wissenschaften - Reihe B, 11: 47-81.
  • 35. Hubert, J.F., 1962. Azircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and text ure of sandstones. Journal of Sedimentary Research, 32: 440-450.
  • 36. Hurst, A., Morton, A., 2014. Provenance models: the role of sandstone mineral-chemical stratigraphy. Geological Society Special Publications, 386: 7-26.
  • 37. Johnson, M.E., 1988. Why are ancient rocky shorelines so uncommon? Journal of Geology, 96: 469-480.
  • 38. Johnson, M.E., 2006. Uniformitarianism as a guide to rocky-shore ecosystems in the geologic record. Canadian Journal of Earth Sciences, 43: 1119-1147.
  • 39. Kern, H.P., Lavina, E.L.C., Palm, P.S.G., Leanza, H.A., 2019. Stratigraphic evolution of the nearshore to fluvial plain of the Upper Cuyo Group, Neuquen, Argentina. Sedimentology, 66: 2686-2720.
  • 40. Kühn, O., 1955. Die Bryozoen der Retzer Sande. Sitzungsberichte der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Abteilung I, 164: 231-248.
  • 41. Lamb, M.P., Myrow, P.M., Lukens, C., Houck, K., Strauss, J., 2008. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, U.S.A. Journal of Sedimentary Research, 78: 480-498.
  • 42. Leckie, D., 1987. Wave-formed, coarse-grained ripples and their relationship to hummocky cross-stratification. Journal of Sedimentary Petrology, 58: 607-622.
  • 43. Lihou, J.C., Mange-Rajetzky, M.A., 1996. Provenance of the Sardona Flysch, eastern Swiss Alps: example of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sedimentary Geology, 105: 141-157.
  • 44. Longhitano, S., Chiarella, D., Di Stefano, A., Messina, C., Sabato, L., Tropeano, M., 2012. Tidal signatures in Neogene to quaternary mixed deposits of southern Italy straits and bays. Sedimentary Geology, 270: 74-96.
  • 45. Mader, D., 1980. Weitergewachsene Zirkone im Bundsandstein der Westeifel. Der Aufschluss, 31: 163-170.
  • 46. Maejima, W., 1982. Texture and stratification of gravelly beach sediments, Enju Beach, Kii Peninsula, Japan. Journal of Geoscience, Osaka City University, 25: 35-51.
  • 47. Mandic, O., Harzhauser, M., 1999. Pectiniden (Bivalvia) als Faziesindikatoren im Eggenburgium der Retz-Formation. In: Arbeitstagung der Geologischen Bundesanstalt 1999, Retz-Hollabrunn, 3-7 Mai 1999, Wien (ed. R. Roetzel): 231-232.
  • 48. Mandic, O., Steininger, F.F., 2003. Computer-based mollusc stratigraphy - a case study from the Eggenburgian (Lower Miocene) type region (NE Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 197: 263-291.
  • 49. Mange, M.A., Maurer, H.F.W., 1992. Heavy Minerals in Colour. Chapman and Hall, London.
  • 50. Mange, M.A., Morton A.C., 2007. Geochemistry of heavy minerals. Developments in Sedimentology, 58: 345-391.
  • 51. Massari, F., Parea, G.C., 1988. Progradational gravel beach sequences in a moderate- to high-energy, microtidal marine environment. Sedimentology, 35: 881-913.
  • 52. Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T., 2008. Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology, 203: 98-111.
  • 53. Morton, A.C., Hallsworth, C.R., 1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90: 241-256.
  • 54. Morton, A.C., Hallsworth, C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124: 3-29.
  • 55. Morton, A.C., Mundy, D.J.C., Bingham, G., 2012. High-frequency fluctuations in heavy mineral assemblages from Upper Jurassic sandstones of the Piper Formation, UK North Sea: relationships with sea level change and floodplain residence. GSA Special Paper, 487: 163-176.
  • 56. Myrow, P.M., 1992. Pot and gutter casts from Chapel Island Formation, southeast Newfoundland. Journal of Sedimentary Research, 62: 992-1007.
  • 57. Myrow, P.M., Southard, J.B., 1996. Tempestite deposition. Journal of Sedimentary Research, 66: 875-887.
  • 58. Nalin, R., Massari, F., 2009. Facies and stratigraphic anatomy of a temperate carbonate sequence (Capo Colonna terrace, Late Pleistocene, southern Italy). Journal of Sedimentary Research, 79: 210-225.
  • 59. Nalin, R., Ghinassi, M., Foresi, L.M., Dallanave, E., 2016. Carbonate deposition in restricted basins: a Pliocene case study from the Central Mediterranean (Northwestern Apennines), Italy. Journal of Sedimentary Research, 86: 236-267.
  • 60. Nebelsick, J., 1989. Temperate water carbonate facies of the Early Miocene Paratethys (Zogelsdorf Formation, Lower Austria). Facies, 21: 11-40.
  • 61. Nehyba, S., Roetzel, R., 2021. Coastal sandy spit deposits (Lower Burdigalian/Eggenburgian) in the Alpine-Carpathian Foredeep of Lower Austria. Geological Quarterly, 65: 50.
  • 62. Nemec, W., Steel, R.J., 1984. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass flow deposits. Canadian Society of Petroleum Geologists Memoir, 10: 1-31.
  • 63. Niedermayr, G., 1967. Die akzessorischen Gemengteile von Gföhler Gneis, Granitgneis und Granulit im niederösterreichischen Waldviertel. Annalen des Naturhistorischen Museums Wien, 70: 19-27.
  • 64. Nummedal, D., Swift, D.J.P., 1987. Transgressive stratigraphy at sequence-bounding un conformities: some principles de rived from Holocene and Cretaceous example. SEPM Special Publication, 41: 241-260.
  • 65. Okada, H., 1971. Classification of sandstone: analysis and proposal. The Journal of Geology, 79: 509-525.
  • 66. Otava, J., Sulovsky, P., Čopjakova, R., 2000. Provenance changes of the Drahany Culm greywackes: statistical evaluation (in Czech). Geologicke vyzkumy na Morave a ve Slezku v r. 1999: 94-98.
  • 67. Pettijohn, F.J., Potter, P.E., Siever, R., 1987. Sand and Sandstone. 2nd edition, Springer-Verlag, New York.
  • 68. Piller, W.E., Harzhauser, M., Mandic, O., 2007. Miocene Cent ral Paratethys stratigraphy - current status and further directions. Stratigraphy, 4: 151-l68.
  • 69. Poldervaart, A., 1950. Statistical studies of zircon as a criterion in granitization. Nature, 165: 574-575.
  • 70. Postma, G., Nemec, W., 1990. Regressive and transgressive sequences in a raised Holocene gravelly beach, southwestern Crete. Sedimentology, 37: 907-920.
  • 71. Powers, M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23: 117-119.
  • 72. Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73: 207-220.
  • 73. Pupin, J.P., 1985. Magmatic zoning of hercynian granitoids in France based on zircon typology. Schweizerische mineralogische und petrographische Mitteilungen, 65: 29-56.
  • 74. Reineck, H.-E., Singh, I.B., 1980. Depositional Sedimentary Environments. 2nd ed., Springer, Berlin-Heidelberg-New York.
  • 75. Roetzel, R., 1996. Bericht 1994/1995 über geologische Aufnahmen im Tertiär und Quartär mit Bemerkungen zur Tektonik am Diendorfer Störungssystem auf Blatt 22 Hollabrunn. Jahrbuch der Geologischen Bundesanstalt, 139: 286-295.
  • 76. Roetzel, R., Heinrich, M., 1999. A1 Obermarkersdorf - Sandgrube Diem. In: Arbeitstagung der Geologischen Bundesanstalt 1999, Retz-Hollabrunn, 3-7 Mai 1999, Wien (ed. R. Roetzel): 261-263.
  • 77. Roetzel, R., Kurzweil, H., 1986. Die Schwerminerale in niederösterreichischen Quarzsanden und ihre wirtschaftliche Bedeutung. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 7: 199-216.
  • 78. Roetzel, R. [Bearbeitung]; Batík, P., Cicha, I., Havlíček, P., Holásek, O., Novák, Z., Pálenský, P., Roetzel, R., Rudolský, J., Růžička, M., Stránik, Z., Švábenická, L., Vůjta, M. [Geol. Aufnahme], Hofmann, Th. [Naturdenkmalbuch], Hellerschmidt-Alber, J. [Störungen - Satellitenbild- und Luftbildauswertung], 1998. Geologische Karte der Republik Österreich 1:50.000 22 Hollabrunn. Wien (Geologische Bundesanstalt).
  • 79. Roetzel, R., Fuchs, G. (österreichischer Anteil), Batik, P., Ctyroky, (tschechischer Anteil) [Bearbeitung]; Batik, P., Ctyroka, J., Ctyroky, P., Dudek, A., Fuchs, G., Havlicek, P., Matejovska, O., Roetzel, R. [geol. Aufnahme], Hofmann, Th. [Naturschutzbuch], 1999a. Geologische Karte der Republik Österreich 1:50.000 9 Retz. Wien (Geologische Bundesanstalt).
  • 80. Roetzel, R., Mandic, O., Steininger, F.F., 1999b. Lithostratigraphie und Chronostratigraphie der tertiären Sedimente im westlichen Weinviertel und angrenzenden Waldviertel. In: Arbeitstagung der Geologischen Bundesanstalt 1999, Retz-Hollabrunn, 3-7 Mai 1999 (ed. R. Roetzel): 38-54, Wien.
  • 81. Roetzel, R., mit Beiträgen von Fuchs, G., Havlíček, P., Übl, Ch., Wrbka, Th., 2005. Geologie im Fluss. Erläuterungen zur Geologischen Karte der Nationalparks Thayatal und Podyjí. Wien (Geologische Bundesanstalt).
  • 82. Rostinsky, P., Roetzel, R., 2005. Exhumed Cenozoic landforms on the SE flank of the Bohemian Massif in the Czech Republic and Austria. Zeitschrift für Geomorphologie: Neue Folge, 49: 23-45.
  • 83. Salata, D., 2014. Advantages and limitations of interpretations of external morphology of detrital zircon: a case study of the Ropianka and Menilite formations (Skole nappe, Polish Flysch Carpathians). Annales Societatis Geologorum Poloniae, 84: 153-165.
  • 84. Schubert, G., Safoschnik, T., Supper, R., Bernhard, M., Felfer, W., Roetzel, R., 1999. B1 Das Becken von Obermarkersdorf. In: Arbeitstagung der Geologischen Bundesanstalt 1999, Retz-Hollabrunn, 3-7 Mai 1999 (ed. R. Roetzel): 279-286, Wien.
  • 85. Sturm, R., 2010. Morphology and growth trends of accessory zircons from vari ous granitoids of the South-western Bohemian Massif (Moldanubicum, Austria). Chemie der Erde, 70: 185-196.
  • 86. Tolosana-Delgado, R., von Eynatten, H., Krippner, A., Meinhold, G., 2018. A multivariate discrimination scheme of detrital garnet chemistry for use in sediment provenance analysis. Sedimentary Geology, 375: 14-26.
  • 87. Triebold, S., von Eynatten, H., Luvizotto, G.L., Zack, T., 2007. Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany. Chemical Geology, 244: 421-436.
  • 88. Triebold, S., von Eynatten, H., Zack, T., 2012. A recipe for the use of rutile in sedimentary provenance analysis. Sedimentary Geology, 282: 268-275.
  • 89. Vavra, N., 1979. Die Bryozoenfauna des österreichischen Tertiärs. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 157: 366-392.
  • 90. Vavra, N., 1981. Bryozoa from the Eggenburgian (Lower Miocene, Central Paratethys) of Austria. In: Recent and Fossil Bryozoa, (eds. G.P Larwood and C. Nielsen): 273-280. Fredensborg.
  • 91. Walker, R.G., James, N.P., 1992. Facies Models: Response to Sea Level Changes. Geological Association of Canada, St. John's.
  • 92. Watkins, R., 1992. Sedimentology and paleoecology of Pliocene shallow marine conglomerates, Salton trough region, California. Palaeogeography, Palaeoclimatology, Palaeoecology, 95: 319-333.
  • 93. Whitaker, J.H.McD., 1973. “Gutter casts”, a new name for scour-and-fill structures: with examples from the LLandoverian of Ringerike and Malmöya, southern Norway. Norsk Geologisk Tidsskrift, 53: 403-417.
  • 94. Wignall, P.B., Sutcliffe, O.E., Clemson, J., Young, E., 1996. Unusual shoreface sedimentology in the Upper Julassic of the Boulonnais, northern France. Journal of Sedimentary Research, 60: 577-586.
  • 95. Winter, J., 1981. Exakte tephrostratigraphische Korrelation mit morphologisch differenzierten Zirkonpopulationen (Grenzbereich Unter-/Mitteldevon, Eifel-Ardennen). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 162: 97-136.
  • 96. Yoshida, S., Steel, R.J., Dalrymple, R.W., 2007. Changes in depositional processes - an ingredient in a new generat ion of sequence-stratigraphic models. Journal of Sedimentary Research, 77: 447-460.
  • 97. Zack, T., von Eynatten, H., Kronz, A., 2004a. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171: 37-58.
  • 98. Zack, T., Moraes, R., Kronz, A., 2004b. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148: 471-488.
  • 99. Zecchin, M., 2007. The architectural variability of small-scale cycles in shelf and ramp clastic systems: the controlling factors. Earth-Science Reviews, 84: 21-55.
  • 100. Zimmerle, W., 1979. Accessory Zircon from Rhyolite, Yellowstone National Park (Wyoming, U.S.A.). Zeitschrift der deutschen Geologischen Gesellschaft, 130: 361-369.
  • 101. Zingg, Th., 1935. Beiträge zur Schotteranalyse. Schweizerische mineralogische und petrographische Mitteilungen, 15: 39-140.
  • 102. Zoleikhaei, Y., Frei, D., Morton, A., Zamanzadeh, M.S., 2016. Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran. Sedimentary Geology, 342: 106-117.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bcf71b6-c48e-4c2c-a291-2eef3be81d63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.