PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of different conditions on particle dynamics and properties in West-Estonian coastal areas

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Satellite sensors are used to monitor water on a large scale. One of the key variables defining the water-leaving signal is suspended particulate matter (SPM) and thus it is important to understand its properties to improve remote sensing algorithms. However, only a few studies investigating the variability of SPM properties (concentration, nature and size) under different seasonal, weather and geographical conditions have been carried out in the Baltic Sea. We focused on relatively shallow areas (maximum depth of 10 m) where there is strong sediment transport by rivers and resuspension of the particles by wave action and advection by currents. Eleven field campaigns were conducted using a set of instruments measuring inherent optical properties, auxiliary data, and, in Pärnu Bay, also particle size distributions. The results showed that the SPM concentrations, particulate absorption, mass-specific particulate scattering, and backscattering varied temporally and spatially from 5.5–19.6 g m−3, 0–5.62 m−1, 0.08–1.45 m2 g−1, and 0.0009–0.25 m2 g−1, respectively. The spectral backscattering ratio, which in general is considered to be constant in bio-optical remote sensing algorithms, was actually wavelength-dependent and varied between 0.005 and 0.09 depending on the origin of the particles (organic or mineral matter), particle size distribution, weather conditions, and location. In situ particle size measurements in coastal waters of Pärnu Bay also showed that resuspended fine clay particles agglomerated into flocs of >30 µm in the brackish waters of the Baltic Sea having random shapes and different sizes.
Czasopismo
Rocznik
Strony
694--716
Opis fizyczny
Bibliogr., 86 poz., fot., map., rys., tab, wykr.
Twórcy
  • Tartu Observatory, University of Tartu, Tartumaa, Estonia
autor
  • Tartu Observatory, University of Tartu, Tartumaa, Estonia
autor
  • Estonian Marine Institute, University of Tartu, Tallinn, Estonia
  • CEFREM, UMR 5110 CNRS, UPVD, Perpignan Cedex, France
  • Tartu Observatory, University of Tartu, Tartumaa, Estonia
  • Tartu Observatory, University of Tartu, Tartumaa, Estonia
  • Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Bibliografia
  • 1. Aas, E., Høkedal, J., Sørensen, K., 2005. Spectral backscattering coefficient in coastal waters. Int. J. Remote Sens. 26, 331-343. https://doi.org/10.1080/01431160410001720324
  • 2. Agrawal, Y.C., Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168, 89-114. https://doi.org/10.1016/S0025-3227(00)00044-X
  • 3. Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843-859. https://doi.org/10.4319/lo.2003.48.2.0843
  • 4. Bader, H., 1970. The hyperbolic distribution of particle sizes. J. Geophys. Res. 75, 2822-2830. https://doi.org/10.1029/JC075i015p02822
  • 5. Berthon, J.F., Zibordi, G., 2010. Optically black waters in the northern Baltic Sea. Geophys. Res. Lett. 37, 1-6. https://doi.org/10.1029/2010GL043227
  • 6. Bianchi, T.S., Engelhaupt, E., Westman, P., Andrén, T., Rolff, C., Elmgren, R., 2000. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced? Limnol. Oceanogr. 45, 716-726. https://doi.org/10.4319/lo.2000.45.3.0716
  • 7. Boss, E., Pegau, W.S., 2001. Relationship of light scattering at an angle in the backward direction to the backscattering co-efficient. Appl. Opt. 40, 5503. https://doi.org/10.1364/AO.40.005503
  • 8. Boss, E., Pegau, W.S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G., 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. J. Geophys. Res. 109, 1-10. https://doi.org/10.1029/2002JC001514
  • 9. Buonassissi, C.J., Dierssen, H.M., 2010. A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters. J. Geophys. Res. Ocean. 115, 1-12. https://doi.org/10.1029/2010JC006256
  • 10. Callede, J., Kosuth, P., Loup, J., Guimarães, S., Callede, J., 2009. Discharge determination by Acoustic Doppler Current Profilers (ADCP): a moving bottom error correction method and its application on the River Amazon at Óbidos correction method and its application on the River. Hydrolog. Sci. J. 45 (6), 911-924. https://doi.org/10.1080/02626660009492392
  • 11. Chami, M., Shybanov, E.B., Churilova, T.Y., Khomenko, G.A., Lee, M.E., Martynov, O.V, Berseneva, G.A., Korotaev, G.K., 2005. Optical properties of the particles in the Crimea coastal waters (Black Sea). J. Geophys. Res. 110, 1-17. https://doi.org/10.1029/2005JC003008
  • 12. Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P., Kaczmarek, S., 2003. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms. Cont. Shelf Res. 23, 237-250. https://doi.org/10.1016/S0278-4343(02)00222-4
  • 13. Davies, E.J., Nepstad, R., 2017. In situ characterisation of complex suspended particulates surrounding an active submarine tailings placement site in a Norwegian fjord. Reg. Stud. Mar. Sci. 16, 198-207. https://doi.org/10.1016/j.rsma.2017.09.008
  • 14. EEA, 2015. The European environment - state and outlook 2015: synthesis report. Copenhagen. https://doi.org/10.2800/944899
  • 15. ESS, 1993. ESS Method 340.2. Total suspended solids, mass balance (dried at 103-105° C), volatile suspended solids (Ignited at 550°C). Environ. Sci. Sect. 189-192.
  • 16. Faé, G.S., Montes, F., Bazilevskaya, E., Añó, R.M., Kemanian, A.R., 2019. Making Soil Particle Size Analysis by Laser Diffraction Compatible with Standard Soil Texture Determination Methods. Soil Sci. Soc. Am. J. 83, 1244-1252. https://doi.org/10.2136/sssaj2018.10.0385
  • 17. Filizola, N., Guyot, J.L., 2009. Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set 3215, 3207-3215. https://doi.org/10.1002/hyp
  • 18. Forget, P., Ouillon, S., 1998. Surface suspended matter off the Rhone river mouth from visible satellite imagery. Oceanol. Acta 21, 739-749. https://doi.org/10.1016/S0399-1784(99)80003-6
  • 19. Freda, W., 2012. Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea. Oceanologia 54 (3), 355-367. https://doi.org/10.5697/oc.54-3.355
  • 20. Gee, G.W., Or, D., 2002. 2.4 Particle-Size Analysis. John Wiley & Sons, Ltd, 255-293. https://doi.org/10.2136/sssabookser5.4.c12
  • 21. Gordon, H.R., Brown, O.B., Jacobs, M.M., 1975. Computed Relationships Between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Appl. Opt. 14, 417. https://doi.org/10.1364/ao.14.000417
  • 22. Harvey, E.T., Kratzer, S., Andersson, A., 2015. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambio 44, 392-401. https://doi.org/10.1007/s13280-015-0658-4
  • 23. Hecht, T., van der Lingen, C.D., 1992. Turbidity-induced changes in feeding strategies of fish in estuaries. South African J. Zool. 27, 95-107. https://doi.org/10.1080/02541858.1992.11448269
  • 24. Hendrikson&Ko, 2016. Pärnu maakonnaga piirneva mereala maakonnaplaneering II köide. Pärnu.
  • 25. Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N., Burkholder, J.A.M., 2008. Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. Mar. Pollut. Bull. 56, 1201-1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
  • 26. Holyer, R.J., 1978. Toward universal multispectral suspended sediment algorithms. Remote Sens. Environ. 7, 323-338. https://doi.org/10.1016/0034-4257(78)90023-8
  • 27. Jeffrey, S.W., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Und Physiol. der Pflanz. 167, 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  • 28. Jõeleht, A., 2016. Ülevaade Haapsalu Tagalahe piirkonna geoloogilis test tingimustest seoses kavandatava Noarootsi püsiühendusega. Tartu.
  • 29. Junge, C.E., 1963. Air Chemistry and Radioactivity. Academic Press, New York. Kahru, M., Horstmann, U., Rud, O.E., 1994. Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem change? | Semantic Scholar. Ambio 23, 469-472.
  • 30. Kari, E., Kratzer, S., Beltrán-Abaunza, J.M., Harvey, E.T., Vaiˇci ̄ut ̇e, D., 2017. Retrieval of suspended particulate matter from turbidity—model development, validation, and application to MERIS data over the Baltic Sea. Int. J. Remote Sens. 38, 1983—2003. https://doi.org/10.1080/01431161.2016.1230289
  • 31. Kartau, K., Soomere, T., Tonisson, H., 2011. Quantification of sediment loss from semi-sheltered beaches: a case study of Valgerand Beach, Parnu Bay, the Baltic Sea. J. Coast. Res. 100-104.
  • 32. Kirk, J.T., 1981. Estimation of the scattering coefficient of natural waters using underwater irradiance measurements. Aust. J. Mar. Freshw. Res. 32, 533-539.
  • 33. KKA, 2016. Matsalu rahvuspark. Penijõe.
  • 34. Kostadinov, T.S., Siegel, D.A., Maritorena, S., 2009. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. Ocean. 114, 1-22. https://doi.org/10.1029/2009JC005303
  • 35. Kowalczuk, P., 1999. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. Ocean. 104, 30047-30058. https://doi.org/10.1029/1999jc900198
  • 36. Kratzer, S., Moore, G., 2018. Inherent optical properties of the Baltic Sea in comparison to other seas and oceans. Remote Sens. 10. https://doi.org/10.3390/rs10030418
  • 37. Kutser, T., Herlevi, A., Kallio, K., Arst, H., 2001. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. Sci. Total Environ. 268, 47-58. https://doi.org/10.1016/S0048-9697(00)00682-3
  • 38. Kutser, T., Hiire, M., Metsamaa, L., Vahtmäe, E., Paavel, B., Aps, R., 2009. Field measurements of spectral backscattering coefficient of the Baltic Sea and boreal lakes. Boreal Environ. Res. 14, 305-312.
  • 39. Kutser, T., Paavel, B., Metsamaa, L., Vahtmä, E., 2009. Mapping coloured dissolved organic matter concentration in coastal waters. Int. J. Remote Sens. 30, 5843-5849. https://doi.org/10.1080/01431160902744837
  • 40. Lauringson, V., 2013. Pärnu lahe seisundi parandamine tehislike riffide abil 1. etapp. Tartu. Lee, B.J., Kim, J., Hur, J., Choi, I.H., Toorman, E.A., Fettweis, M., Choi, J.W., 2019. Seasonal Dynamics of Organic Matter Composition and Its Effects on Suspended Sediment Flocculation in River Water. Water Resour. Res. 55, 6968-6985. https://doi.org/10.1029/2018WR024486
  • 41. Leymarie, E., Doxaran, D., Babin, M., 2010. Uncertainties associated to measurements of inherent optical properties in natural waters. Appl. Opt. 49, 5415-5436.
  • 42. Ligi, M., Kutser, T., Kallio, K., Attila, J., Koponen, S., Paavel, B., Soomets, T., Reinart, A., 2017. Testing the performance of empirical remote sensing algorithms in the Baltic Sea waters with modelled and in situ reflectance data. Oceanologia 59 (1), 57-68. https://doi.org/10.1016/j.oceano.2016.08.002
  • 43. Lindell, T., Pierson, D., Premazzi, G., Zilioti, E., 1999. Manual for monitoring European lakes using remote sensing techniques.
  • 44. Lutt, J., Kask, J., 1980. Matsalu lahe põhjasetted. Loodusvaatlusi 1978 (1), 166-178. Many, G., Bourrin, F., Durrieu de Madron, X., Pairaud, I., Gangloff, A., Doxaran, D., Ody, A., Verney, R., Menniti, C., Le Berre, D., Jacquet, M., 2016. Particle assemblage characterization in the Rhone River ROFI. J. Mar. Syst. 157, 39-51. https://doi.org/10.1016/j.jmarsys.2015.12.010
  • 45. Martinez-Vicente, V., Land, P.E., Tilstone, G.H., Widdicombe, C., Fishwick, J.R., 2010. Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel. J. Plankton Res. 32, 603-619. https://doi.org/10.1093/plankt/fbq013
  • 46. Mckee, D., Cunningham, A., 2005. scattering phase function and its implication for modeling radiance transfer in shelf seas. Appl. Opt. 44, 126-135.
  • 47. Meslard, F., Bourrin, F., Many, G., Kerhervé, P., 2018. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard). Estuar. Coast. Shelf Sci. 204, 212-224. https://doi.org/10.1016/j.ecss.2018.02.020
  • 48. Mikkelsen, O.A., Hill, P.S., Milligan, T.G., 2006. Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera. J. Sea Res. 55, 87-102. https://doi.org/10.1016/j.seares.2005.09.003
  • 49. Mikkelsen, O.A., Hill, P.S., Milligan, T.G., Chant, R.J., 2005. In situparticle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera c, 1959—1978. https://doi.org/10.1016/j.csr.2005.07.001
  • 50. Morel, A., 1974. Optical properties of pure water and pure sea water. Opt. Asp. Oceanogr. 1-24. Morel, A., Prieur, L., 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22, 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
  • 51. Neukermans, G., Ruddick, K., Loisel, H., Roose, P., 2012. Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurements. Limnol. Oceanogr. Methods 10, 1011-1023. https://doi.org/10.4319/lom.2012.10.1011
  • 52. Nima, C., Frette, Ø., Hamre, B., Stamnes, J.J., Chen, Y.C., Sørensen, K., Norli, M., Lu, D., Xing, Q., Muyimbwa, D., Ssenyonga, T., Stamnes, K.H., Erga, S.R., 2019. CDOM absorption properties of natural water bodies along extreme environmental gradients. Water (Switzerland) 11, 1-19. https://doi.org/10.3390/w11101988
  • 53. Ohde, T., Siegel, H., Gerth, M., 2007. Validation of MERIS Level-2 products in the Baltic Sea, the Namibian coastal area and the Atlantic Ocean. Int. J. Remote Sens. 28, 609-624. https://doi.org/10.1080/01431160600972961
  • 54. Ohi, N., Makinen, C.P., Mitchell, R., Moisan, T.A., 2008. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis.
  • 55. Paavel, B., Arst, H., Metsamaa, L., Toming, K., Reinart, A., 2011. Optical investigations of CDOM-rich coastal waters in Pärnu Bay. Est. J. Earth Sci. 60, 102-112. https://doi.org/10.3176/earth.2011.2.04
  • 56. Palanques, A., Diaz, J.I., Farran, M.L., 1995. Contamination of heavy metals in the suspended and surface sediment of the Gulf of Cadiz (Spain): The role of sources, currents, pathways and sinks. Oceanol. Acta 18, 469-477.
  • 57. Pegau, S., Zaneveld, J.R.V., Mitchell, G.B., Mueller, J.L., Kahru, M., Wieland, J., Stramska, M., 2003. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4. Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols. Goddard Space Flight Space Center, Greenbelt, MD. https://doi.org/10.25607/OBP-64
  • 58. Pope, R.M., Fry, E.S., 1997. Absorption spectrum (380—700 nm) of pure water II Integrating cavity measurements. Appl. Opt. 36, 8710. https://doi.org/10.1364/AO.36.008710
  • 59. Qiu, Z., Sun, D., Hu, C., Wang, S., Zheng, L., Huan, Y., Peng, T., 2016. Variability of particle size distributions in the Bohai Sea and the Yellow Sea. Remote Sens. 8. https://doi.org/10.3390/rs8110949
  • 60. Randla, M., Uudeberg, K., Ligi, M., Bourrin, F., Kutser, T., 2018. Heljumi omaduste ja dünaamika varieerumine Pärnu lahes. Eesti Kaugseirepäev, Tõravere, Estonia.
  • 61. Reynolds, R.A., Stramski, D., Neukermans, G., 2016. Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 61, 1869-1890. https://doi.org/10.1002/lno.10341
  • 62. Sadaoui, M., Ludwig, W., Bourrin, F., Raimbault, P., 2016. Controls, budgets and variability of riverine sediment fluxes to the Gulf of Lions (NW Mediterranean Sea). J. Hydrol. 540, 1002-1015. https://doi.org/10.1016/j.jhydrol.2016.07.012
  • 63. Sakho, I., Dussouillez, P., Delanghe, D., Hanot, B., 2019. Suspended sediment flux at the Rhone River mouth (France) based on ADCP measurements during flood events.
  • 64. Simis, S.G.H., Ylöstalo, P., Kallio, K.Y., Spilling, K., Kutser, T., 2017. Contrasting seasonality in opticalbiogeochemical properties of the Baltic Sea. PLoS One 12, 1-31. https://doi.org/10.1371/journal.pone.0173357
  • 65. Slade, W.H., Boss, E., 2015. Spectral attenuation and backscattering as indicators of average particle size. Appl. Opt. 54, 7264-7277.
  • 66. Snyder, W.A., Arnone, R.A., Davis, C.O., Goode, W., Gould, R.W., Ladner, S., Lamela, G., Rhea, W.J., Stavn, R., Sydor, M., Weidemann, A., 2008. Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters. Appl. Opt. 47, 666-677. https://doi.org/10.1364/AO.47.000666
  • 67. Spencer, K.L., Wheatland, J.A.T., Bushby, A.J., Carr, S.J., Droppo, I.G., Manning, A.J., 2021. A structure—function based approach to floc hierarchy and evidence for the non-fractal nature of natural sediment flocs. Sci. Rep. 11, 1-10. https://doi.org/10.1038/s41598-021-93302-9
  • 68. Stramska, M., Stramski, D., Mitchell, B.G., Mobley, C.D., 2000. Estimation of the absorption and backscattering coefficients from in-water radiometric measurements. Limnol. Oceanogr. 45, 628-641. https://doi.org/10.4319/lo.2000.45.3.0628
  • 69. Sullivan, J.M., Twardowski, M.S., Ronald, J., Zaneveld, V., Moore, C.C., 2013. 6 Measuring optical backscattering in water. https://doi.org/10.1007/978-3-642-21907-8
  • 70. Sullivan, J.M., Twardowski, M.S., Zaneveld, J.R.V., Moore, C.M., Barnard, A.H., Donaghay, P.L., Rhoades, B., 2006. Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range. Appl. Opt. 45, 5294. https://doi.org/10.1364/AO.45.005294
  • 71. Sun, D., Chen, S., Qiu, Z., Wang, S., Huan, Y., He, Y., 2017. Second-order variability of inherent optical properties of particles in Bohai Sea and Yellow Sea: Driving factor analysis and modeling 1266-1287. https://doi.org/10.1002/lno.10503
  • 72. Sydor, M., 1980. Remote sensing of particulate concentrations in water. Appl. Opt. 19, 2794. https://doi.org/10.1364/ao.19.002794
  • 73. Tao, J., Hill, P.S., Boss, E.S., Milligan, T.G., 2018. Variability of Suspended Particle Properties Using Optical Measurements Within the Columbia River Estuary 6296-6311. https://doi.org/10.1029/2018JC014093
  • 74. The International Organization for Standardization, 2018. ISO 5667-3: 2018 Water Quality—Sampling—Part 3: Preservation and Handling of Water Samples. Geneva, Switzerland. The International Organization for Standardization, 1992. ISO 10260: 1992 Water quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration. Geneva, Switzerland.
  • 75. Toming, K., Kutser, T., Uiboupin, R., Arikas, A., Vahter, K., Paavel, B., 2017. Mapping water quality parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 9. https://doi.org/10.3390/rs9101070
  • 76. Twardowski, M.S., Boss, E., Macdonald, J.B., Pegau, W.S., Barnard, A.H., Zaneveld, J.R.V., 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J. Geophys. Res. 106, 14129. https://doi.org/10.1029/2000JC000404
  • 77. Twardowski, M.S., Sullivan, J.M., Donaghay, P.L., Zaneveld, J.R.V., 1999. Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. J. Atmos. Ocean. Technol. 16, 691-707. https://doi.org/10.1175/1520-0426(1999)016〈0691:MQOTAB〉2.0.CO;2
  • 78. Ulloa, O., Sathyendranath, S., Platt, T., 1994. Effect of the particle-size distribution on the backscattering ratio in seawater. Appl. Opt. 33, 7070-7077.
  • 79. Uudeberg, K., Aavaste, A., Kõks, K.L., Ansper, A., Uusõue, M., Kangro, K., Ansko, I., Ligi, M., Toming, K., Reinart, A., 2020. Opticalwater type guided approach to estimate opticalwater quality parameters. Remote Sens. 12. https://doi.org/10.3390/rs12060931
  • 80. Uudeberg, K., Randla, M., Arikas, A., Soomets, T., Toming, K., Reinart, A., 2019. Underwater light field changes in Pärnu Bay influenced by weather phenomena and captured by Sentinel-3 (oral presentation). Bio-Optical and Remote Sensing Workshop.
  • 81. WET Labs, 2011. ac Meter Protocol Document. Philomath. WET Labs, 2010. Scattering Meter ECO-BB9, User’s Guide. Philomath.
  • 82. WET Labs, 2007. ECO-VSF3: Three-angle, Three-wavelength Volume Scattering Function Meter [WWW Document]. User’s Guid URL.
  • 83. Whitmire, A.L., Boss, E., Cowles, T.J., Pegau, W.S., 2007. Spectral variability of the particulate backscattering ratio. Opt. Express 15, 7019-7031. https://doi.org/10.1029/2005JC003008
  • 84. Wolanskit, E., Gibbst, R.J., 1995. Flocculation of Suspended Sediment in the Fly River Estuary, Papua New Guinea. J. Coast. Res.11, 754-762.
  • 85. Woźniak, S.B., Meler, J., Lednicka, B., Zdun, A., Sto ́n-Egiert, J., 2011. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 53 (3), 691-729. https://doi.org/10.5697/oc.53-3.691
  • 86. Woźniak, S.B., Sagan, S., Zabłocka, M., Sto ́n-Egiert, J., Borzycka, K., 2018. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Mar. Syst. 182, 79-96. https://doi.org/10.1016/j.jmarsys.2017.12.005
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bcd947e-fb4a-461a-9462-64827d0585d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.