PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of infiltration rate for soil‑biochar composites of water hyacinth

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this short communication is to investigate the interactive effects of CIF, suction and volumetric water content (VWC) on infiltration rate for compacted soil–biochar (BC) composites (0%, 5% and 10%). The biochar was produced from an invasive weed Eichhornia crassipes. Soil parameters such as suction (ψ), VWC, CIF and infiltration rate were monitored simultaneously for 63 days (9 drying–wetting cycles) in those composites. This was followed by statistical modeling using artificial neural networks. Results showed that increase in WH BC content reduced the infiltration rates. The role of CIF in determining the infiltration rate reduced (50–38%) with the addition of BC to soil. Suction played an equal role (36–35%), both for bare soil and for WH BC composites, in determining the infiltration rate. Significance of VWC in determining rate of infiltration increases (14–27%) as the BC content increases. This is more likely, as the addition of BC enhanced the water retention capacity.
Czasopismo
Rocznik
Strony
231--246
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Department of Civil and Environmental Engineering, Shantou University, Shantou, China
  • Department of Civil Engineering, Mahindra École Centrale, Hyderabad, India
  • Department of Civil and Environmental Engineering, Shantou University, Shantou, China
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, India
autor
  • Department of Civil and Environmental Engineering, Shantou University, Shantou, China
  • Department of Civil Engineering, Mahindra École Centrale, Hyderabad, India
autor
  • Department of Civil and Environmental Engineering, Shantou University, Shantou, China
autor
  • Department of Civil and Environmental Engineering, Shantou University, Shantou, China
  • Department of Civil Engineering, Mahindra École Centrale, Hyderabad, India
autor
  • Department of Civil and Environmental Engineering, Shantou University, Shantou, China
autor
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, India
Bibliografia
  • 1. Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenergy 84:76–86CrossRefGoogle Scholar
  • 2. Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Belhaj D (2017) Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour Technol 238:306–312CrossRefGoogle Scholar
  • 3. Ahmed MB, Zhou JL, Ngo HH, Johir MAH, Sornalingam K (2018) Sorptive removal of phenolic endocrine disruptors by functionalized biochar: competitive interaction mechanism, removal efficacy and application in wastewater. Chem Eng J 335:801–811CrossRefGoogle Scholar
  • 4. Alaoui A, Goetz B (2008) Dye tracer and infiltration experiments to investigate macropore flow. Geoderma 144(1–2):279–286CrossRefGoogle Scholar
  • 5. Angulo-Jaramillo R, Bagarello V, Iovino M, Lassabatere L (2016) Infiltration measurements for soil hydraulic characterization. Springer, BaselCrossRefGoogle Scholar
  • 6. Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111(1–2):81–84CrossRefGoogle Scholar
  • 7. Assouline S (2013) Infiltration into soils: conceptual approaches and solutions. Water Resour Res 49(4):1755–1772CrossRefGoogle Scholar
  • 8. ASTM E1755-01 (2007) Standard test method for ash in biomassGoogle Scholar
  • 9. Awokuse TO, Xie R (2015) Does agriculture really matter for economic growth in developing countries? Can J Agric Econ/Revue canadienne d’agroeconomie 63(1):77–99CrossRefGoogle Scholar
  • 10. Barnes RT, Gallagher ME, Masiello CA, Liu Z, Dugan B (2014) Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 9(9):108340CrossRefGoogle Scholar
  • 11. Bianchi A, Masseroni D, Thalheimer M, de Medici LO, Facchi A (2017) Field irrigation management through soil water potential measurements: a review. Ital J Agrometeorol-Riv Ital Di Agrometeorol 22(2):25–38Google Scholar
  • 12. Bordoloi S, Hussain R, Garg A, Sreedeep S, Zhou WH (2017) Infiltration characteristics of natural fiber reinforced soil. Transp Geotech 12:37–44CrossRefGoogle Scholar
  • 13. Bordoloi S, Garg A, Sreedeep S, Peng L, Mei G (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour Technol 263:665–677CrossRefGoogle Scholar
  • 14. Chapman TJP (2008) The relevance of developer costs in geotechnical risk management. In: Proceedings of the 2nd British geotechnical association international conference on foundations-ICOFGoogle Scholar
  • 15. Chemerys V, Baltrėnaitė E (2018) Influence of intrinsic properties of lignocellulosic feedstock on adsorptive properties of biochar. J Environ Eng 144(9):04018075CrossRefGoogle Scholar
  • 16. Das O, Sarmah AK, Bhattacharyya D (2016) Biocomposites from waste derived biochars: mechanical, thermal, chemical, and morphological properties. Waste Manage 49:560–570CrossRefGoogle Scholar
  • 17. Decagon Devices (2013) Minidisk infiltrometer user’s manual version 10. Decagon Devices, PullmanGoogle Scholar
  • 18. Decagon Devices (2016) MPS-2 & MPS-6. Dielectric water potential sensors. Decagon Devices, PullmanGoogle Scholar
  • 19. Ding Y, Liu Y, Liu S, Huang X, Li Z, Tan X, Zeng G, Zhou L (2017) Potential benefits from biochar application for agricultural use: a review. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60375-8
  • 20. Fodor N, Sándor R, Orfanus T, Lichner L, Rajkai K (2011) Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165(1):60–68CrossRefGoogle Scholar
  • 21. Gadi VK, Bordoloi S, Garg A, Sahoo L, Berretta C, Sekharan S (2017) Effect of shoot parameters on cracking in vegetated soil. Environ Geotech 5:1–8Google Scholar
  • 22. Garg A, Li J, Berretta C, Garg A (2017a) A new computational approach for estimation of wilting point for green infrastructure. J Measur 111:351–358. https://doi.org/10.1016/j.measurement.2017.07.026CrossRefGoogle Scholar
  • 23. Garg A, Vijayaraghavan V, Zhang J, Lam JSL (2017b) Robust model design for evaluation of power characteristics of the cleaner energy system. Renew Energy 112:302–313CrossRefGoogle Scholar
  • 24. Garg A, Vijayaraghavan V, Zhang J, Li S, Liang X (2017c) Design of robust battery capacity model for electric vehicle by incorporation of uncertainties. Int J Energy Res 41:1436–1451. https://doi.org/10.1002/er.3723CrossRefGoogle Scholar
  • 25. Garg A, Bordoloi S, Mondal S, Ni JJ, Sreedeep S (2018) Investigation of mechanical factor of soil reinforced with four types of fibers: an integrated experimental and extreme learning machine approach. J Nat Fibers. https://doi.org/10.1080/15440478.2018.1521763
  • 26. Goering HK, Van Soest PJ (1970) Forage fiber analysis. USDA agricultural research service. Handbook number 379. US Department of Agriculture, Superintendent of Documents, US Government Printing Office, WashingtonGoogle Scholar
  • 27. Gogoi D, Bordoloi N, Goswami R, Narzari R, Saikia R, Sut D, Gogoi L, Kataki R (2017) Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol 242:36–44CrossRefGoogle Scholar
  • 28. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, ScarboroughGoogle Scholar
  • 29. Jenkins SH (1930) The determination of cellulose in straws. Biochem J 24(5):1428CrossRefGoogle Scholar
  • 30. Kirkham MB (2005) Principles of soil and plant water relations. Elsevier Academic Press, Burlington, pp 145–172CrossRefGoogle Scholar
  • 31. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems— a review. Mitig Adapt Strat Glob Change 11:395–419CrossRefGoogle Scholar
  • 32. Li JH, Zhang LM (2010) Geometric parameters and REV of a crack network in soil. Comput Geotech 37(4):466–475CrossRefGoogle Scholar
  • 33. Li JH, Zhang LM, Wang Y, Fredlund DG (2009) Permeability tensor and representative elementary volume of saturated cracked soil. Can Geotech J 46(8):928–942CrossRefGoogle Scholar
  • 34. Li JH, Li L, Chen R, Li DQ (2016a) Cracking and vertical preferential flow through landfill clay liners. Eng Geol 206:33–41CrossRefGoogle Scholar
  • 35. Li F, Shen K, Long X, Wen J, Xie X, Zeng X, Liang Y, Wei Y, Lin Z, Huang W, Zhong R (2016b) Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11(2):0148132Google Scholar
  • 36. Lichner L, Orfánus T, Nováková K, Šír M, Tesař M (2007) The impact of vegetation on hydraulic conductivity of sandy soil. Soil Water Res 2:59–66CrossRefGoogle Scholar
  • 37. Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 12(6):e0179079CrossRefGoogle Scholar
  • 38. López-Vicente M, Álvarez S (2018) Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surf Process Landf 43(7):1403–1415CrossRefGoogle Scholar
  • 39. Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33(1):122–138CrossRefGoogle Scholar
  • 40. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alex Eng J 52(3):507–516CrossRefGoogle Scholar
  • 41. Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. CATENA 111:64–71CrossRefGoogle Scholar
  • 42. Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado DT (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82(4):1090–1096CrossRefGoogle Scholar
  • 43. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, HobokenGoogle Scholar
  • 44. Nagata Y, Chu KH (2003) Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol Lett 25(21):1837–1842CrossRefGoogle Scholar
  • 45. National Asphalt Pavement Association (2018) Retrieved from http://www.asphaltpavement.org/index.php?option=com_content&view=article&id=517&Itemid=1149
  • 46. Ng CW, Menzies B (2007) Advanced unsaturated soil mechanics and engineering. CRC Press, Boca RatonGoogle Scholar
  • 47. Ng CW, Coo JL, Chen ZK, Chen R (2016) Water infiltration into a new three-layer landfill cover system. J Environ Eng 142(5):04016007CrossRefGoogle Scholar
  • 48. Patel KA, Brahmbhatt PK (2016) A comparative study of the RSM and ANN models for predicting surface roughness in roller burnishing. Proc Technol 23:391–397CrossRefGoogle Scholar
  • 49. Reddy KR, Xie T, Dastgheibi S (2014) Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. J Environ Eng 140(12):04014043CrossRefGoogle Scholar
  • 50. Technical Association of the Pulp, & Paper Industry (1992) TAPPI test methods. TappiGoogle Scholar
  • 51. Téllez TR, López EMDR, Granado GL, Pérez EA, López RM, Guzmán JMS (2008) The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat Invasions 3(1):42–53CrossRefGoogle Scholar
  • 52. Tripathy A, Pramanik S, Manna A, Bhuyan S, Azrin Shah NF, Radzi Z, Abu Osman NA (2016) Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16(7):1135CrossRefGoogle Scholar
  • 53. Vu TM, Doan DP, Van HT, Nguyen TV, Vigneswaran S, Ngo HH (2017) Removing ammonium from water using modified corncob-biochar. Sci Total Environ 579:612–619CrossRefGoogle Scholar
  • 54. Wei D, Ngo HH, Guo W, Xu W, Du B, Khan MS, Wei Q (2018) Biosorption performance evaluation of heavy metal onto aerobic granular sludge-derived biochar in the presence of effluent organic matter via batch and fluorescence approaches. Bioresour Technol 249:410–416CrossRefGoogle Scholar
  • 55. Wu S, He H, Inthapanya X, Yang C, Lu L, Zeng G, Han Z (2017) Role of biochar on composting of organic wastes and remediation of contaminated soils—a review. Environ Sci Pollut Res 24(20):16560–16577CrossRefGoogle Scholar
  • 56. Yesiller N, Miller CJ, Inci G, Yaldo K (2000) Desiccation and cracking behavior of three compacted landfill liner soils. Eng Geol 57(1–2):105–121CrossRefGoogle Scholar
  • 57. Zhang YY, Zhang DY, Barrett SC (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol 19(9):1774–1786
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bc75394-dc9e-4ef5-89d9-8e10660ce866
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.