PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empirical examination of ai-powered decision support systems: ensuring trust and transparency in information and knowledge security

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this publication is to present the applications of the use of decision support systems using artificial intelligence to ensure trust in information and knowledge. Design/methodology/approach: Literature analysis based on the Scopus database, taken into account from 2020 and 2024. Using this analysis, research criteria were developed and 11,315 surveys were conducted among owners and managers of small or medium-sized companies. The survey was conducted using the CAWI method, and respondents rated as many as 5 segments on a Likert scale. Findings: The manuscript presents an empirical analysis of AI-powered decision support systems (DSS) and their role in ensuring trust and transparency in information and knowledge security. By examining 11,315 surveys from small and medium-sized business owners and managers, the study investigates how these AI systems influence trust in information security practices. The research fills a gap in the literature by providing a comprehensive empirical analysis of AI-based DSS, highlighting their technological intricacies and social implications, and proposing solutions to enhance trustworthiness and decision-making processes in AI applications. Research limitations/implications: The study has several research limitations. Firstly, it was conducted exclusively in Poland, focusing on small and medium-sized enterprises, which may limit the generalizability of the findings to other geographical regions or larger organizations. Additionally, the sampling technique employed was non-random and based on the researcher's subjective judgment, potentially introducing bias and affecting the representativeness of the sample. The survey method used, Computer-Assisted Web Interviewing (CAWI), and the reliance on self-reported data may lead to response bias, impacting the accuracy of the results. In terms of research implications, the study offers practical solutions to enhance trustworthiness and decision-making processes in AI applications, which can be beneficial for organizations looking to implement AI-driven decision support systems. It also highlights various deficiencies in existing studies, suggesting future research directions, such as investigating the long-term effects of AI on organizational frameworks, exploring ethical implications, and developing new theoretical models. Originality/value: The manuscript fills the gap in the analysis of AI-based decision support systems for the area of trust in the security of information and knowledge resources.
Rocznik
Tom
Strony
679--695
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
  • Czestochowa University of Technology, Faculty of Management
Bibliografia
  • 1. Aloqaily, M., Kanhere, S., Bellavista, P., Nogueira, M. (2022). Special Issue on Cybersecurity Management in the Era of AI. J. Netw. Sys.t Manage., 30.
  • 2. Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V.I. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20, 310.
  • 3. Artificial intelligence for the real world (2018). Harvard Business Review, 96, 108.
  • 4. Babel, A., Taneja, R., Mondello Malvestiti, F., Monaco, A., Donde, S. (2021). Artificial Intelligence Solutions to Increase Medication Adherence in Patients With Non-communicable Diseases. Frontiers in Digital Health, 3, 669869.
  • 5. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R. et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115.
  • 6. Batool, K., Zhao, Z.-Y., Irfan, M., Żywiołek, J. (2023). Assessing the role of sustainable strategies in alleviating energy poverty: an environmental sustainability paradigm. Environ. Sci. Pollut. Res. Int., 30, 67109-67130.
  • 7. Borenstein, J., Howard, A. (2021). Emerging challenges in AI and the need for AI ethics education. AI and Ethics, 1, 61-65.
  • 8. Donins, U., Behmane, D. (2023). Challenges and Solutions for Artificial Intelligence Adoption in Healthcare – A Literature Review. In: Innovation in Medicine and Healthcare: Proceedings of 11th KES-InMed 2023, Chen (ed.), pp. 53-62. Singapore: Springer Singapore.
  • 9. Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A. et al. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994
  • 10. Emaminejad, N., Kath, L., Akhavian, R. (2024). Assessing Trust in Construction AI-Powered Collaborative Robots Using Structural Equation Modeling. J. Comput. Civ. Eng., 38.
  • 11. García de Soto, B., Georgescu, A., Mantha, B., Turk, Ž., Maciel, A., Semih Sonkor, M. (2022a). Construction cybersecurity and critical infrastructure protection: new horizons for Construction 4.0. ITcon. 27, 571-594.
  • 12. García de Soto, B., Turk, Ž., Maciel, A., Mantha, B., Georgescu, A., Sonkor, M.S. (2022b). Understanding the Significance of Cybersecurity in the Construction Industry: Survey Findings. Journal of Construction Engineering and Management, 148.
  • 13. Gerke, S., Minssen, T., Cohen, G., Gerke, S., Minssen, T., Cohen, G. (2020). Artificial intelligence in healthcare. London, San Diego, CA: Academic Press, imprint of Elsevier.
  • 14. Giuste, F., Shi, W., Zhu, Y., Naren, T., Isgut, M., Sha, Y., Tong, L., Gupte, M., Wang, M.D. (2023). Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review. IEEE Reviews in Biomedical Engineering, 16, 5-21.
  • 15. Hagendorff, T. (2020). The Ethics of AI Ethics: An Evaluation of Guidelines. Minds & Machines, 30, 99-120.
  • 16. Hlávka, J.P., Hlávka, J.P. (2020). Artificial intelligence in healthcare. London, San Diego, CA: Academic Press, imprint of Elsevier.
  • 17. Ibeneme, S., Okeibunor, J., Muneene, D., Husain, I., Bento, P., Gaju, C., Housseynou, B., Chibi, M., Karamagi, H., Makubalo, L. (2021). Data revolution, health status transformation and the role of artificial intelligence for health and pandemic preparedness in the African context. BMC Proceedings, 15, 22.
  • 18. Jobin, A., Ienca, M., Vayena, E. (2019). The global landscape of AI ethics guidelines. Nat. Mach. Intell., 1, 389-399.
  • 19. Khan, M.A., Kumar, N., Mohsan, S.A.H. Khan, W.U., Nasralla, M.M., Alsharif, M.H., Żywiołek, J., Ullah, I. (2023). Swarm of UAVs for Network Management in 6G: A Technical Review. IEEE Trans. Netw. Serv. Manage., 20, 741-761.
  • 20. Klinova, K., Korinek, A. (2021). AI and Shared Prosperity, ACM.
  • 21. Kosinski, M., Stillwell, D., Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110, 5802-5805.
  • 22. Kshetri, N. (2021). Economics of Artificial Intelligence in Cybersecurity. IT Prof., 23, 73-77.
  • 23. Kumar, D., Suthar, N. (2024). Ethical and legal challenges of AI in marketing: an exploration of solutions. JICES.
  • 24. Li, J.-P.O., Liu, H., Ting, D.S.J., Jeon, S., Chan, R.V.P., Kim, J.E., Sim, D.A., Thomas, P.B.M., Lin, H., Chen, Y. et al. (2021). Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Progress in Retinal and Eye Research, 82, 100900.
  • 25. Liang, C.-J., Le, T.-H., Ham, Y., Mantha, B.R., Cheng, M.H., Lin, J.J. (2024). Ethics of artificial intelligence and robotics in the architecture, engineering, and construction industry. Automation in Construction, 162, 105369.
  • 26. Liu (2022). Trustworthy AI: a computational perspective. ACM Transactions on Intelligent Systems and Technology, 14, 1.
  • 27. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y. (2020). Federated Learning for Data Privacy Preservation in Vehicular Cyber-Physical Systems. IEEE Network, 34, 50-56.
  • 28. Mantha, B.R., García de Soto, B. (2021a). Assessment of the cybersecurity vulnerability of construction networks. ECAM, 28, 3078-3105.
  • 29. Mantha, B.R.K., García de Soto, B. (2021b). Cybersecurity in Construction: Where Do We Stand and How Do We Get Better Prepared. Front. Built Environ., 7.
  • 30. Mittelstadt, B., Russell, C., Wachter, S. (2019). Explaining Explanations in AI, ACM.
  • 31. Nawshin, F., Unal, D., Hammoudeh, M., Suganthan, P.N. (2024). AI-powered malware detection with Differential Privacy for zero trust security in Internet of Things networks. Ad Hoc Networks, 161, 103523.
  • 32. Nguyen, T.V., Dakka, M.A., Diakiw, S.M., VerMilyea, M.D., Perugini, M., Hall, J.M.M., Perugini, D (2022) A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data. Scientific Reports 12: 8888.
  • 33. Ojha, N.K., Pandita, A., Ramkumar, J. (2024). Cyber Security Challenges and Dark Side of AI. In: Demystifying the Dark Side of AI in Business (pp. 117-137). Dadwal, S. (ed.). IGI Global.
  • 34. Patel, V.A., Bhattacharya, P., Tanwar, S., Gupta, R., Sharma, G., Bokoro, P.N., Sharma, R. (2022). Adoption of Federated Learning for Healthcare Informatics: Emerging Applications and Future Directions. IEEE Access, 10, 90792-90826.
  • 35. Petersson, L., Larsson, I., Nygren, J.M., Nilsen, P., Neher, M., Reed, J.E., Tyskbo, D., Svedberg, P. (2022). Challenges to implementing artificial intelligence in healthcare: a qualitative interview study with healthcare leaders in Sweden. BMC Health Services Research, 22, 850.
  • 36. Phillips, P.J., Hahn, C.A., Fontana, P.C., Yates, A.N., Greene, K., Broniatowski, D.A., Przybocki, M.A. (2021). Four principles of explainable artificial intelligence. Gaithersburg, MD: National Institute of Standards and Technology (U.S.)
  • 37. Prieto, S.A., Mengiste, E.T., García de Soto, B. (2023). Investigating the Use of ChatGPT for the Scheduling of Construction Projects. Buildings, 13, 857.
  • 38. Raban, Y., Hauptman, A. (2018). Foresight of cyber security threat drivers and affecting technologies. FS, 20, 353-363.
  • 39. Schia, M.H., Trollsås, B.C., Fyhn, H., Lædre, O. (2019). The Introduction of AI in the Construction Industry and Its Impact on Human Behavior. International Group for Lean Construction.
  • 40. Shang, Y., Zhou, S., Zhuang, D., Żywiołek, J., Dincer, H. (2024). The impact of artificial intelligence application on enterprise environmental performance: Evidence from microenterprises. Gondwana Research, 131, 181-195.
  • 41. Sibbald, M., Zwaan, L., Yilmaz, Y., Lal, S. (2024). Incorporating artificial intelligence in medical diagnosis: A case for an invisible and (un)disruptive approach. Journal of Evaluation in Clinical Practice, 30, 3-8.
  • 42. Sunarti, S., Fadzlul Rahman, F., Naufal, M., Risky, M., Febriyanto, K., Masnina, R. (2021). Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria, 35, Suppl 1, S67-S70.
  • 43. Taddeo, M., McCutcheon, T., Floridi, L. (2019). Trusting artificial intelligence in cybersecurity is a double-edged sword. Nature Machine Intelligence, 1, 557-560.
  • 44. Varriale, V., Cammarano, A., Michelino, F., Caputo, M. (2023). Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems. J. Intell. Manuf.
  • 45. Wang, S., Chen, Z., Xiao, Y., Lin, C. (2021). Consumer Privacy Protection With the Growth of AI-Empowered Online Shopping Based on the Evolutionary Game Model. Frontiers in Public Health, 9, 705777.
  • 46. Wu, D., Ren, A., Zhang, W., Fan, F., Liu, P., Fu, X., Terpenny, J. (2018). Cybersecurity for digital manufacturing. Journal of Manufacturing Systems, 48, 3-12.
  • 47. Wu, J., Yang, R., Zhao, P., Yang, L. (2024). Computer-aided mobility solutions: Machine learning innovations to secure smart urban transportation. Sustainable Cities and Society, 107, 105422.
  • 48. Yang, Z., Silcox, C., Sendak, M., Rose, S., Rehkopf, D., Phillips, R., Peterson, L., Marino, M., Maier, J., Lin, S. et al. (2022). Advancing primary care with Artificial Intelligence and Machine Learning. Healthc (Amst), 10, 100594.
  • 49. Zywiolek, J., Sarkar, A., Sial, M.S. (2022). Biometrics as a method of employee control. 16th International Conference on Ubiquitous Information Management and Communication (IMCOM). IEEE, pp. 1-5.
  • 50. Żywiołek, J., Rosak-Szyrocka, J., Jereb, B. (2021). Barriers to Knowledge Sharing in the Field of Information Security. Management Systems in Production Engineering, 29, 114-119.
  • 51. Żywiołek, J., Rosak-Szyrocka, J., Nayyar, A., Naved, M. (2024) Modern Technologies and Tools Supporting the Development of Industry 5.0. New York: CRC Press.
  • 52. Żywiołek, J., Schiavone, F. (2021) Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety. Energies, 14, 5511.
  • 53. Żywiołek, J., Tucmeanu, E.R., Tucmeanu, A.I., Isac, N., Yousaf, Z. (2022). Nexus of Transformational Leadership, Employee Adaptiveness, Knowledge Sharing, and Employee Creativity. Sustainability, 14, 11607.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bc3f72c-ffac-470e-9383-ee0b4c86206d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.