PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnosis of air compressor condition using minimum redunduncy maximum relevance (MRMR) algorithim and distance metric based classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finding a reliable machines condition monitoring technique has been attracted many researchers to avoid the sudden failure in machines and the unexpected consequences. This work proposes a fault diagnosis of air compressors using frequency-based features and distance metric-based classification. The analyzed experimental datasets contain one healthy condition and seven different fault conditions. Features are extracted from the frequency spectrum, then the best feature sets are selected using MRMR algorithm and eventually the classification is conducted using a distance metric classifier. The results demonstrated the automatic classification with more than 97% correct classification rate. The effect of selected feature set size, training sample size on the classification accuracy is also investigated. From the results, this method of analysis can be used for early detection of faults with very great accuracy.
Czasopismo
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, Wasit University, Iraq
autor
  • Mechanical Engineering Department, Wasit University, Iraq
  • Civil Engineering Department, Wasit University, Iraq
Bibliografia
  • 1. Elhaj M, Gu F, Ball A, Albarbar A, Al-Qattan M, Naid A. Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring. Mechanical Systems and Signal Processing. 2008;22(2):374-389. https://doi.org/10.1016/j.ymssp.2007.08.003.
  • 2. Pichler K, Lughofer E, Pichler M, Buchegger T, Klement EP, Huschenbett M. Fault detection in reciprocating compressor valves under varying load conditions. Mechanical Systems and Signal Processing. 2016; 70:104-119. https://doi.org/10.1016/j.ymssp.2015.09.005.
  • 3. Wang Y, Xue C, Jia X, Peng X. Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion. Mechanical systems and signal Processing. 2015;56:197-212. https://doi.org/10.1016/j.ymssp.2014.11.002.
  • 4. Verma NK, Gupta R, Sevakula RK, Salour A. Signal transforms for feature extraction from vibration signal for air compressor monitoring. TENCON 2014-2014 IEEE Region 10 Conference, 2014: 1-6.
  • 5. Verma NK, Kadambari J, Abhijit B, Tanu S, alour A. Finding sensitive sensor positions under faulty condition of reciprocating air compressors. 2011 IEEE Recent Advances in Intelligent Computational Systems, 2011:242-246.
  • 6. Tran VT, AlThobiani F, Tinga T, Ball A, Niu G. Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2018;232(20):3767-3780. https://doi.org/10.1177/0954406217740929.
  • 7. Tabrizi AA, Al-Bugharbee H, Trendafilova I, Garibaldi L. A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions. Meccanica 2017; 52(4-5): 1201-1217. https://doi.org/10.1007/s11012-016-0451-x.
  • 8. Liu Y, Duan L, Yuan Z, Wang N, Zhao J. An intelligent fault diagnosis method for reciprocating compressors based on LMD and SDAE. Sensors 2019; 19(5): 1041. https://doi.org/10.3390/s19051041.
  • 9. Li CJ, Yu X. High pressure air compressor valve fault diagnosis using feedforward neural networks. Mechanical Systems and Signal Processing. 1995; 9(5):527-536. https://doi.org/10.1006/mssp.1995.0040.
  • 10. Verma NK, Roy A, Salour A. An optimized fault diagnosis method for reciprocating air compressors based on SVM. IEEE International Conference on System Engineering and Technology, 2011: 65-69.
  • 11. Wang Y, Gao A, Zheng S, Peng X. Experimental investigation of the fault diagnosis of typical faults in reciprocating compressor valves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2016; 230(13): 2285-2299. https://doi.org/10.1177/0954406215592921.
  • 12. Zhang X, Song Z, Li D, Zhang W, Zhao Z, Chen Y. Fault diagnosis for reducer via improved LMD and SVM-RFE-MRMR. Shock and Vibration 2018: 4526970. https://doi.org/10.1155/2018/4526970.
  • 13. Tang X, He Q, Gu X, Li C, Zhang H, Lu J. A Novel bearing fault diagnosis method based on GL-mRMRSVM. Processes. 2020; 8(7): 784. https://doi.org/10.3390/pr8070784.
  • 14. Zubaidi SL, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim KS, Gharghan SK, Kot P, Al-Khaddar R. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 2020; 12(7): 1885. https://doi.org/10.3390/w12071885.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bc193f8-cada-4cf0-a3c0-d5c75cfd2aef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.