Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mapping mountain ecosystems is needed for local planning. Ecosystem boundaries are influenced by interrelated physical and environmental factors rather than singular physical features. Tropical mountain landscapes exhibit diverse surface patterns, impacting their terrestrial ecological systems. Using river network data and digital terrain models (DTMs), we delineated ecosystem groups based on seven surface parameters: river order, channel sinuosity, elevation, slope, aspect, roughness index, and curvature. A multivariate clustering method identified ecosystem groups with similar attributes, further clarified using geological and land cover maps to account for surface and subsurface material variations and their processes. Our analysis identified five distinct ecosystem units: the young Sumbing volcanic peak, old Sumbing volcanic peak, old Sumbing volcanic slope, transitional volcanic, and old Menoreh volcanic ecosystems. The parameters that have a strong influence in limiting these units are elevation, slope, curvature, and roughness. Despite being part of the same mountain range, these ecosystems exhibit markedly different physical land characteristics. The surface-boundary-based delineation method provides a practical approach to defining mountain ecosystems, aligning spatial planning with land capacity and ecosystem service provisioning. By incorporating insights from river flow patterns and DTMs, this method captures the complexity of land surfaces shaped by past volcanic-tectonic activity and ongoing erosion-deposition processes. The resulting spatial boundaries reflect both current natural capital and dynamic limiting factors, demonstrating its potential for effective and detailed landscape management in complex mountainous regions.
Wydawca
Rocznik
Tom
Strony
286--300
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
- Department of Environmental Science, The Graduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
autor
- Department of Soil Science, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
autor
- Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
autor
- Faculty of Maritime Science, Kobe University, Japan
Bibliografia
- 1. Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra,H., and Hoorn, C. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11(10). https://doi.org/10.1038/s41561-018-0236-z
- 2. Apriadsa, A., Anggoro, H. S., Cahyono, A., and Apriadna, R. (2019). Unveil the ‘lost toponyms’ in the northern part of the Menoreh Mountains, Java, Indonesia. International Journal of Cartography, 5(2–3). https://doi.org/10.1080/23729333.2019.1611025
- 3. Aspinall, R., and Pearson, D. (2000). Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management, 59(4), 299–319. https://doi.org/10.1006/JEMA.2000.0372
- 4. Belyanin, P. S. (2021). The landscape structure of the Gede–Pangrango Stratovolcano (West Java, Indonesia). Geography and Natural Resources, 42(4). https://doi.org/10.1134/S187537282104003X
- 5. Birkeland, P. (2014). Mountain geography: Physical and human dimensions. Edited by Martin F. Price, Alton C. Byers, Donald A. Friend, Thomas Kohler, and Larry W. Price. Arctic, Antarctic, and Alpine Research 46(2). https://doi.org/10.1657/1938-4246-46.2.525
- 6. Bishop, M. P., and Dobreva, I. D. (2017). Geomorphometry and mountain geodynamics: Issues of scale and complexity. Integrating Scale in Remote Sensing and Gis. https://doi.org/10.1201/9781315373720-17
- 7. Burbank, D. W., and Anderson, R. S. (2011). Tectonic geomorphology: Second Edition. In Tectonic Geomorphology: Second Edition. https://doi.org/10.1002/9781444345063
- 8. Carter, A. (2011). R. S. Anderson and S. P. Anderson 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. xvi + 637pp. Cambridge University Press. Price £40.00, US$75.00 (PB). ISBN 978 0 521 51978 6. Geological Magazine, 148(2). https://doi.org/10.1017/s0016756810000932
- 9. Chen, J. (2002). Landscape ecology: A top–down approach. Ecological Engineering, 18(4). https://doi.org/10.1016/s0925-8574(02)00006-x
- 10. Cheng, Z., Aakala, T., and Larjavaara, M. (2023). Elevation, aspect, and slope influence woody vegetation structure and composition but not species richness in a human-influenced landscape in northwestern Yunnan, China. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ ffgc.2023.1187724
- 11. Clements, B., Hall, R., Smyth, H. R., and Cottam, M. A. (2009). Thrusting of a volcanic arc: A new structural model for Java. Petroleum Geoscience, 15(2). https://doi.org/10.1144/1354-079309-831
- 12. Cullingham, C. I., Janes, J. K., Hamelin, R. C., James, P. M. A., Murray, B. W., and Sperling, F. A. H. (2019). The contribution of genetics and genomics to understanding the ecology of the mountain pine beetle system. Canadian Journal of Forest Research, 49(7). https://doi.org/10.1139/cjfr-2018-0303
- 13. Ford, J. R., Price, S. J., Cooper, A. H., and Waters, C. N. (2014). An assessment of lithostratigraphy for anthropogenic deposits. Geological Society Special Publication, 395(1). https://doi.org/10.1144/SP395.12
- 14. Fouedjio, F., and Arya, E. (2024). Locally varying geostatistical machine learning for spatial prediction. Artificial Intelligence in Geosciences, 5, 100081. https://doi.org/10.1016/J.AIIG.2024.100081
- 15. García-Navas, V., Sattler, T., Schmid, H., and Ozgul, A. (2020). Temporal homogenization of functional and beta diversity in bird communities of the Swiss Alps. Diversity and Distributions, 26(8). https://doi.org/10.1111/ddi.13076
- 16. Germino, M. J., Reiners, W. A., Blasko, B. J., McLeod, D., and Bastian, C. T. (2001). Estimating visual properties of Rocky Mountain landscapes using GIS. Landscape and Urban Planning, 53(1–4), 71–83. https://doi.org/10.1016/ S0169-2046(00)00141-9
- 17. Giano, S. I., Danese, M., Gioia, D., Pescatore, E., Siervo, V., and Bentivenga, M. (2020). Tools for Semi-automated Landform Classification: A Comparison in the Basilicata Region (Southern Italy). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12250 LNCS. https://doi.org/10.1007/978-3-030-58802-1_51
- 18. Grêt-Regamey, A., Bebi, P., Bishop, I. D., and Schmid, W. A. (2008). Linking GIS-based models to value ecosystem services in an Alpine region. Journal of Environmental Management, 89(3), 197–208. https://doi.org/10.1016/J.JENVMAN.2007.05.019
- 19. Grêt-Regamey, A., Brunner, S. H., and Kienast, F. (2012). Mountain ecosystem services: Who cares? Mountain Research and Development, 32(SUPPL. 1). https://doi.org/10.1659/MRD-JOURNAL-D-10-00115.S1
- 20. Grêt-Regamey, A., and Weibel, B. (2020). Global assessment of mountain ecosystem services using earth observation data. Ecosystem Services, 46, 101213. https://doi.org/10.1016/J.ECOSER.2020.101213
- 21. Hoechstetter, S., Walz, U., Dang, L. H., and Thinh, N. X. (2008). Effects of topography and surface roughness in analyses of landscape structure - A proposal to modify the existing set of landscape metrics. Landscape Online, 3(1). https://doi.org/10.3097/LO.200803
- 22. Huggett, R. J. (2016). Fundamentals of Geomorphology. In Fundamentals of Geomorphology. https://doi.org/10.4324/9781315674179
- 23. Kang, Y., Wu, K., Gao, S., Ng, I., Rao, J., Ye, S., Zhang, F., and Fei, T. (2022). STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity. International Journal of Geographical Information Science, 36(8). https://doi.org/10.1080/1 3658816.2022.2053980
- 24. Karki, S., Webb, J. A., Stewardson, M. J., Fowler, K., and Kattel, G. R. (2023). Basin-scale riverine ecosystem services vary with network geometry. Ecosystem Services, 63. https://doi.org/10.1016/j. ecoser.2023.101555
- 25. Kooi, H., and Beaumont, C. (1996). Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model. Journal of Geophysical Research: Solid Earth, 101(2). https://doi.org/10.1029/95jb01861
- 26. Körner, C. (2021). Alpine plant life: Functional plant ecology of high mountain ecosystems. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. https://doi.org/10.1007/978-3-030-59538-8
- 27. Lane, B. A., Pasternack, G. B., Dahlke, H. E., and Sandoval-Solis, S. (2017). The role of topographic variability in river channel classification. Progress in Physical Geography, 41(5). https://doi.org/10.1177/0309133317718133
- 28. Lauder, M. R. M. T., Bachtiar, T., and Sobarna, C. (2023). Geographical Names as Indicators of the Environment: Case Study in Bandung Basin, West Java, Indonesia. In Key Challenges in Geography: Vol. Part F2248. https://doi.org/10.1007/978-3-031-21510-0_26
- 29. Li, A., Wang, A., Liang, S., and Zhou, W. (2006). Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang River, China. Ecological Modelling, 192(1–2), 175–187. https://doi.org/10.1016/J.ECOLMODEL.2005.07.005
- 30. MacMillan, R. A., Jones, R. K., and McNabb, D. H. (2004). Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs). Computers, Environment and Urban Systems, 28(3), 175–200. https://doi.org/10.1016/S0198-9715(03)00019-X
- 31. Marti, E., Leray, S., Villela, D., Maringue, J., Yáñez, G., Salazar, E., Poblete, F., Jimenez, J., Reyes, G., Poblete, G., Huamán, Z., Figueroa, R., Araya Vargas, J., Sanhueza, J., Muñoz, M., Charrier, R., and Fernández, G. (2023). Unravelling geological controls on groundwater flow and surface water-groundwater interaction in mountain systems: A multi-disciplinary approach. Journal of Hydrology, 623. https://doi.org/10.1016/j.jhydrol.2023.129786
- 32. Mileyko, Y., Edelsbrunner, H., Price, C. A., and Weitz, J. S. (2012). Hierarchical ordering of reticular networks. PLoS ONE, 7(6). https://doi.org/10.1371/ journal.pone.0036715
- 33. Minár, J., and Evans, I. S. (2008). Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, 95(3–4). https://doi.org/10.1016/j. geomorph.2007.06.003
- 34. Noviyanto, A., Sartohadi, J., and Purwanto, B. H. (2020). The distribution of soil morphological characteristics for landslide-impacted Sumbing Volcano, Central Java - Indonesia. Geoenvironmental Disasters, 7(1). https://doi.org/10.1186/ S40677-020-00158-8
- 35. Oberle, P., Ikhwan, M., Stoffel, D., and Nestmann, F. (2016). Adapted hydropower-driven water supply system: assessment of an underground application in an Indonesian karst area. Applied Water Science, 6(3). https://doi.org/10.1007/s13201-016-0425-0
- 36. Opedal, Ø. H., Armbruster, W. S., and Graae, B. J. (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology and Diversity, 8(3). https://doi.org/10.1080/175508 74.2014.987330
- 37. Pannekoek, A. (1949). Outline of the Geomorphology of Java. TAG: The Netherlands. https://scholar.google. co.id/scholar?hl=enandas_sdt=0%2C5andq=Panneko ek+1949+Geomorphology+of+JavaandbtnG=
- 38. Patley, M. K., Tiwari, A., Kumar, K., Arumugam, T., Kinattinkara, S., and Arumugam, M. (2024). Study of mountain ecosystem accounting in lower Himalaya range in Uttarkhand, India using geospatial technology. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2024.101811
- 39. Patru-Stupariu, I., Hossu, C. A., Gradinaru, S. R., Nita, A., Stupariu, M. S., Huzui-Stoiculescu, A., and Gavrilidis, A. A. (2020). A review of changes in mountain land use and ecosystem services: From theory to practice. Land, 9(9). https://doi.org/10.3390/LAND9090336
- 40. Peeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., Gebbers, R., and Ben-Gal, A. (2015). Getis-Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Computers and Electronics in Agriculture, 111. https://doi.org/10.1016/j.compag.2014.12.011
- 41. Pratiwi, E. S., Sartohadi, J., and Wahyudi. (2019). Geoelectrical Prediction for Sliding Plane Layers of Rotational Landslide at the Volcanic Transitional Landscapes in Indonesia. IOP Conference Series: Earth and Environmental Science, 286(1). https://doi.org/10.1088/1755-1315/286/1/012028
- 42. Prskalo, G. (2010). Improved Horton-Strahler scheme for stream network classification and its implementation in the method of geomorphologic instantaneous unit hydrograph. Journal of Environmental Hydrology, 18.
- 43. Pulungan, N. A., and Sartohadi, J. (2018). New Approach to Soil Formation in the Transitional Landscape Zone: Weathering and Alteration of Parent Rocks. Journal of Environments, 5(1). https://doi.org/10.20448/journal.505.2018.51.1.7
- 44. Ran, Y., Liu, Y., Wu, S., Li, W., Zhu, K., Ji, Y., Mir, Y., Ma, M., and Huang, P. (2022). A higher river sinuosity increased riparian soil structural stability on the downstream of a dammed river. Science of the Total Environment, 802. https://doi.org/10.1016/j. scitotenv.2021.149886
- 45. Reddy, G. P. O. (2018). Geospatial Technologies in Land Resources Mapping, Monitoring, and Management: An Overview. https://doi.org/10.1007/978-3-319-78711-4_1
- 46. Salvacion, A. R. (2016). Terrain characterization of small island using publicly available data and open-source software: a case study of Marinduque, Philippines. Modeling Earth Systems and Environment, 2(1). https://doi.org/10.1007/s40808-016-0085-y
- 47. Šamanović, S., Medak, D., and Gajski, D. (2016). Analysis Of The Pit Removal Methods In Digital Terrain Models Of Various Resolutions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2. https://doi.org/10.5194/ isprs-archives-xli-b2-235-2016
- 48. Saputra, A., Gomez, C., Delikostidis, I., Zawar-Reza, P., Hadmoko, D. S., Sartohadi, J., and Setiawan, M. A. (2018). Determining earthquake susceptible areas southeast of yogyakarta, Indonesia—outcrop analysis from structure from motion (SfM) and geographic information system (GIS). Geosciences (Switzerland), 8(4). https://doi.org/10.3390/ geosciences8040132
- 49. Sartohadi, J., Harlin Jennie Pulungan, N. A., Nurudin, M., and Wahyudi, W. (2018). The ecological perspective of landslides at soils with high clay content in the middle bogowonto watershed, central Java, Indonesia. Applied and Environmental Soil Science, 2018. https://doi.org/10.1155/2018/2648185
- 50. Sathyamoorthy, D. (2009). Computation of scale independent surface roughness. Defence Sand Technical Bulletin, 2(1).
- 51. Skoulikidis, N. T. (2021). Mountainous areas and river systems. In Environmental Water Requirements in Mountainous Areas. https://doi.org/10.1016/ B978-0-12-819342-6.00009-9
- 52. Suescún, D., Villegas, J. C., León, J. D., Flórez, C. P., García-Leoz, V., and Correa-Londoño, G. A. (2017). Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Regional Environmental Change, 17(3). https://doi.org/10.1007/s10113-016-1071-7
- 53. Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology, 216, 295–312. https://doi.org/10.1016/J. GEOMORPH.2014.03.008
- 54. Tefera, G. W., Ray, R. L., and Bantider, A. (2024). Exploring the unique biophysical characteristics and ecosystem services of mountains: A review. Journal of Mountain Science, 21(11), 3584–3597. https://doi.org/10.1007/S11629-024-8828-0/METRICS
- 55. Van Bemmelen, R. W. (1949). The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes. In Government Printing Office, The Hague.
- 56. Walia, S. S., Kaur, K., and Kaur, T. (2024). Soil and Water Conservation Techniques in Rainfed Areas. In Rainfed Agriculture and Watershed Management. https://doi.org/10.1007/978-981-99-8425-1_15
- 57. Weiss, D. J., and Walsh, S. J. (2009). Remote sensing of mountain environments. Geography Compass, 3(1). https://doi.org/10.1111/j.1749-8198.2008.00200.x
- 58. West, N. (2001). Spatial Pattern Analysis in Plant Ecology. Crop Science, 41(3). https://doi.org/10.2135/cropsci2001.413916x
- 59. Wida, W. A., Maas, A., and Sartohadi, J. (2019). Pedogenesis of Mt. Sumbing Volcanic Ash above The Alteration Clay Layer in The Formation of Landslide Susceptible Soils in Bompon Sub-Watershed. Ilmu Pertanian (Agricultural Science), 4(1). https://doi.org/10.22146/ipas.41893
- 60. Zhang, P., Yao, W., Tang, H., and Xiao, P. (2018). Rill morphology change and its effect on erosion and sediment yield on loess slope. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34(5). https://doi.org/10.11975/j.issn.1002-6819.2018.05.015
- 61. Zhou, D., and Song, W. (2021). Identifying ecological corridors and networks in mountainous areas. International Journal of Environmental Research and Public Health, 18(9). https://doi.org/10.3390/ ijerph18094797
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bbefa40-1562-4812-8d34-88f5f29089af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.