PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An advanced CFD model to study the effect of non-condensable gas on cavitation in positive displacement pumps

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Symposium on Compressor & Turbine Flow Systems Theory & Application Areas "SYMKOM" (11 ; 20-23.10.2014 ; Łódź, Polska)
Języki publikacji
EN
Abstrakty
EN
An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating conditions throughout the inlet stroke. The “full” cavitation model developed by Singhal et al. was utilized and a sensitivity analysis test on two amounts (1.5 and 15 parts per million) air mass fraction content was carried out to study the influence of the air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility which stabilizes the simulation and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the pump performance is also presented in both cases.
Twórcy
autor
  • University of Strathclyde Scotland, United Kingdom 16 Richmond Street, Glasgow G1 1XQ
  • University of Strathclyde Scotland, United Kingdom 16 Richmond Street, Glasgow G1 1XQ
  • University of Strathclyde Scotland, United Kingdom 16 Richmond Street, Glasgow G1 1XQ
Bibliografia
  • [1] Ding H., Visser F.C. and Jiang Y.: A practical approach to speed up NPSHR prediction of centrifugal pumps using CFD cavitation model, in Proceedings of the ASME 2012 Fluids Engineering Summer Meeting., 2012, p. Paper No. FEDSM2012–72282.
  • [2] Budris A.R. and Mayleben P.A.: Effects of entrained air, NPSH margin, and suction piping on cavitation in centrifugal pumps, in Proceeding of the 15th international pump users symposium, 1998, pp. 99-108.
  • [3] Miller J.E.: The reciprocating pump, theory design and use, Second Edi. Krieger publishing company, 1995, pp. 1-467.
  • [4] Opitz K. and Schlücker E.: Detection of Cavitation Phenomena in Reciprocating Pumps using a High-Speed Camera, Chem. Eng. Technol., Vol. 33, No. 10, pp. 1610-1614, Jul. 2010.
  • [5] Opitz K., Schlücker E. and Schade O.: Cavitation in reciprocating positive displacement pumps, in Twenty-seventh international pump users symposium, 2011, pp. 27-33.
  • [6] Iannetti A., Stickland M., and Dempster W.: A CFD study on the mechanisms which cause cavitation in positive displacement reciprocating pumps, Proc. Inst. Mech. Eng. Part A J. power energy, Vol. In Press, 2014.
  • [7] Kuiper G.: Cavitation in ship propulsion. Delft: Delft University of Technology, 2010.
  • [8] Eisenberg P.: Cavitation Damage. Office of Naval Research, 1963, p. 220.
  • [9] Iannetti A., Stickland M.T. and Dempster W.M.: A computational fluid dynamics model to evaluate the inlet stroke performance of a positive displacement reciprocating plunger pump, Proc. Inst. Mech. Eng. Part A J. Power Energy, Vol. 228, No. 5, pp. 574-584, Apr. 2014.
  • [10] ANSYS, ANSYS Fluent Theory Guide, Vol. 15317, No. November. ANSYS Fluent, 2011.
  • [11] Singhal A.K., Athavale M.M., Li H. and Jiang Y.: Mathematical Basis and Validation of the Full Cavitation Model, J. Fluids Eng., Vol. 124, No. 3, p. 617, 2002.
  • [12] ANSYS, ANSYS FLUENT User’ s Guide, Vol. 15317, No. November. ANSYS Inc., 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bbc2ba2-8ca0-48cd-8fc7-5ec10ab58495
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.