PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odors and ammonia emission from a mechanically ventilated fattening piggery on deep litter in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Emisja odorów i amoniaku z tuczarni z wentylacją mechaniczną na głębokiej ściółce w Polsce
Języki publikacji
EN
Abstrakty
EN
Livestock production is the basis of global food production and it is a serious threat to the environment. Significant environmental pollutants are odors and ammonia (NH3) emitted from livestock buildings. The aim of the study was to determine the concentration and emission factors of ammonia and odors, in the summer season, from a deep-litter fattening house. The research was carried out during summer in a mechanically ventilated fattening piggery located in the Greater Poland Voivodeship. Ammonia concentrations were measured using photoacoustic spectrometer Multi Gas Monitor Innova 1312, and odor concentrations were determined by dynamic olfactometry according to EN 13725:2003 using a TO 8 olfactometer. The NH3 emission factors from the studied piggery, in summer, ranged from 8.53 to 21.71 g·day-1·pig-1, (mean value 12.54±4.89 g·days-1·pig-1). Factors related to kg of body mass were from 0.11 to 0.23 g·day-1·kg b.m.-1 (mean value 0.17±0.06 g·day-1·kg b.m.-1). Odor concentrations in the studied piggery were from 755 to 11775 ouE·m-3 and they were diversified (coefficient of variation 43.8%). The mean value of the momentary odor emission factors was 179.5±78.7 ouE·s-1·pig-1. Factor related to kg of body mass was 2.27±1.71 ouE·s-1·kg b.m.-1. In Poland and many other countries, the litter systems of pigs housing are still very popular. Therefore, there is a need to monitor the pollutant emissions from such buildings to identify the factors influencing the amount of this emission. Another important issue is to verify whether the reduction techniques, giving a measurable effect in laboratory research, bring the same reduction effect in production uildings.
PL
Produkcja zwierzęca jest podstawą globalnej produkcji żywności i jednocześnie stanowi poważne zagrożenie dla środowiska. Istotnymi zanieczyszczeniami środowiska są emitowane z budynków inwentarskich odory i amoniak (NH3). Celem pracy było określenie stężenia oraz emisji amoniaku i odorów, w sezonie letnim, z tuczarni na głębokiej ściółce oraz wyznaczenie wskaźników emisji amoniaku i odorów. Badania były prowadzone w sezonie letnim, w mechanicznie wentylowanej tuczarni zlokalizowanej w województwie wielkopolskim. Stężenia amoniaku zmierzono za pomocą spektrometru fotoakustycznego Multi Gas Monitor Innova 1312, a stężenia zapachowe oznaczono metodą olfaktometrii dynamicznej zgodnie z normą EN 13725:2003 przy użyciu olfaktometru TO8. W badanej tuczarni na głębokiej ściółce dobowe wartości wskaźnika emisji NH3, w sezonie letnim, wahały się od 8,53 do 21,71 g·doba-1·szt.-1 (średnio 12,54±4,89 g·doba-1·szt.-1). W odniesieniu do kilograma masy ciała wynosiły od 0,11 do 0,23 g·doba-1·kg m.c.-1 (średnio 0,17±0,06 g·doba-1·kg m.c.-1). Stężenie odorów w badanej tuczarni wynosiło od 755 do 11775 ouE·m-3 i było zróżnicowane (współczynnik zmienności 43,8%). Średnia wartość współczynnika chwilowej emisji odorów wynosiła 179,5±78,7 ouE·s-1·szt.-1. W przeliczaniu na kg masy ciała świni wskaźnik ten był równy 2,27±1,71 ouE·s-1·kg m.c.-1. W Polsce i wielu innych krajach wciąż dużą popularnością cieszą się systemy utrzymania świń na ściółce. Istnieje więc potrzeba monitorowania emisji zanieczyszczeń z takich obiektów, celu zidentyfikowania czynników mających wpływ na wielkość tej emisji. Innym ważnym zagadnieniem jest weryfikacja czy techniki ograniczające uwalnianie zanieczyszczeń, dające mierzalny efekt podczas badań laboratoryjnych, przynoszą ten sam skutek redukcyjny w obiektach produkcyjnych.
Rocznik
Strony
86--94
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  •  Institute of Technology and Life Sciences-National Research Institute, Poland
  •  Poznan University of Technology, Poland
Bibliografia
  • 1. Bebkiewicz, K., Chłopek, Z., Chojnacka, K., Doberska, A., Kanafa, M., Kargulewicz, I., Olecka, A., Rutkowski, J., Walęzak, M., 1. Waśniewska, S., Zimakowska-Laskowska, M. & Żaczek, M. (2021). Poland’s Informative Inventory Report 2021: Air pollutant emissions in Poland 1990–2019. National Centre for Emissions Management (KOBiZE), Warsaw, Poland. https://cdr.eionet.europa.eu/pl/eu/nec_revised/iir/envyei5sq/IIR_2021_Poland.pdf
  • 2. Blanes-Vidal, V., Hansen, M.N., Pedersen, S. & Rom, H.B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow, Agriculture, Ecosystems and Environment, 124, pp. 237‒244. DOI: 10.1016/j.agee.2007.10.002
  • 3. Blanes-Vidal, V., Suh, H., Nadimi, E.S., Løfstrøm, P., Ellermann, T., Andersen, H.V. & Schwartz, J. (2012). Residential exposure to outdoor air pollution from livestock operations and perceived annoyance among citizens, Environment International, 40, pp. 44–50. DOI: 10.1016/j.envint.2011.11.010
  • 4. Bokowa, A., Diaz, C., Koziel J. A., McGinley, M., Barclay, J., Schauberger, G., Guillot J.M., Sneath, R., Capelli L., Zorich, V., Izquierdo, C., Bilsen, I., Romain, A.C., del Carmen Cabeza, M., Liu, D., Both, R., Van Belois, H., Higuchi, T. & Wahe, L. (2021.Summary and Overview of the Odour Regulations Worldwide, Atmosphere, 12, pp. 206. DOI: 10.3390/atmos12020206
  • 5. CEN (2003). European Committee for Standardization CEN. Air Quality – Determination of Odour Concentration by Dynamic Olfactometry; EN 13725:2003; CEN: Brussels, Belgium.
  • 6. Fomunyam, K.G. (2019). Health, mental and emotional impacts of odour producing industrial emissions on man. International Journal of Civil Engineering and Technology, 10, pp. 402–414. Article ID: IJCIET_10_10_039
  • 7. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/3/i3437e/i3437e.pdf
  • 8. Guingand, N. & Rugani, A. (2012). Impact of the Reduction of Straw on Ammonia, GHG and Odors Emitted by Fattening Pigs Housed in a Deep-litter System. Ninth International Livestock Environment Symposium. Valencia, Spain, July 8–12, ASABE, ILES12-0083.
  • 9. Guo, H., Dehod, W., Agnew, J., Laguë, C., Feddes, J.R. & Pang, S. (2006). Annual odor emission rate from different types of swine production buildings, Transactions of the ASABE, 49(2), pp. 517−525
  • 10. Heber, A., Lim, T., Tao, P., Ni, J. & Schmidt, A. (2008). Effect of Oil Sprinkling in Swine Finishing Barns on Odor Characteristics and Emissions, Chemical Engineering Transactions, 15, pp. 353−361.
  • 11. Jo, G., Ha, T., Jang, J.N., Hwang, O., Seo, S., Woo, S.E., Lee, S., Kim, D. & Jung, M. (2020). Ammonia Emission Characteristics of a Mechanically Ventilated Swine Finishing Facility in Korea, Atmosphere, 11, pp. 1088. DOI: 10.3390/atmos11101088
  • 12. Margeta, V. & Kralik, G. (2006). Results of zeolit application in fattening of pigs on deep litter, Krmiva, 48, pp. 69–75.
  • 13. Mielcarek, P., Rzeźnik, W. & Rzeźnik, I. (2014). Ammonia and greenhouse gas emissions from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 83–90.
  • 14. Mielcarek, P. & Rzeźnik, W. (2015). Odor Emission Factors from Livestock Production. Polish Journal of Environmental Studies, 24(1), pp. 27–35. DOI: 10.15244/pjoes/29944
  • 15. Mielcarek, P. & Rzeźnik, W. (2017). The effect of season on the concentration of odours in deep-litter piggery, Journal of Research and Applications in Agricultural Engineering, 62(1), pp. 132−135.
  • 16. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019). Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017. Archives of Environmental Protection, 45(4), pp. 114–121. DOI: 10.24425/aep.2019.130247
  • 17. Ngwabie, N.M., Jeppsson, K.H., Nimmermark, S. & Gustafsson, G. (2011). Effects of animal and climate parameters on gas emissions from a barn for fattening pigs, Applied Engineering Agriculture, 27, pp. 1027‒1037. DOI: 10.1016/j.atmosenv.2011.08.027
  • 18. Ni, J.Q., Shi, C., Liu, S., Richert, B.T., Vonderohe, C.E. & Radcliffe, J.S. (2019). Effects of antibiotic-free pig rearing on ammonia emissions from five pairs of swine rooms in a wean-to-finish experiment, Environment International, 131, pp. 104931. DOI: 10.1016/j.envint.2019.104931
  • 19. Nicks, B., Laitat, M., Farnir, F., Vandenheede, M., Désiron, A., Verhaeghe, C. & Canart, B. (2004). Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs, Animal Science, 78, pp. 99–107. DOI: 10.1017/S1357729800053881
  • 20. Philippe, F.X., Laitat, M., Canart, B., Vandenheede, M. & Nicks, B. (2007). Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter, Livestock Science, 111, pp. 144–152. DOI: 10.1016/j. livsci.2006.12.012
  • 21. RM (2010). Regulation of the Minister for Agriculture and Rural Development of 15 February 2010 on the requirements and procedure for keeping livestock species for which protection standards have been laid down in European Union legislation. Dz.U. 2010 nr 56 poz. 344. (in Polish)
  • 22. Rzeźnik, W., Mielcarek, P. & Rzeźnik, I. (2014). Odour emission from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 91–98.
  • 23. Schauberger, G., Lim, T.T., Ni, J.Q., Bundy, D.S., Haymore, B.L., Diehl, C.A., Duggirala, R.K. & Heber, A.J. (2013). Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor, Atmospheric Environment, 66, pp. 84–90. DOI: 10.1016/j.atmosenv.2012.05.046
  • 24. Sousa, F.A., Campos, A.T., Amaral P.I.S, Castro, J.O., Yanagi Junior T., Veloso, A.V. & Cecchin, D. (2014). Aerial environment and deep litter temperature in a swine building, Journal of Animal Behaviour and Biometeorology, 2(4), pp. 109–116. DOI: 10.14269/2318-1265/jabb.v2n4p109-116
  • 25. Viatte, C., Wang, T., Van Damme, M., Dammers, E., Meleux, F., Clarisse, L., Shephard, M.W., Whitburn, S., Coheur, P.F., Cady- -Pereira, K. E. & Clerbaux, C. (2020). Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area, Atmospheric Chemistry and Physics, 20, pp. 577–596. DOI: 10.5194/acp-20-577-2020
  • 26. Wang, K., Wei, B., Zhu, S. & Ye Z. (2011). Ammonia and odour emitted from deep litter and fully slatted floor systems for growing-finishing pigs, Biosystems Engineering, 109(3), pp. 203–210. DOI: 10.1016/j.biosystemseng.2011.04.001
  • 27. Wei, B., Wang, K., Dai, X., Li, Z. & Luo, H. (2010). Evaluation of Indoor Environmental Conditions of Micro-fermentation Deep Litter Pig Building in Southeast China. 2010 ASABE Annual International Meeting, Pittsburgh, Pennsylvania, USA, June 20 – June 23, ASABE 1009679. DOI: 10.13031/2013.29979
  • 28. Wi, J., Lee, S., Kim, E., Lee, M., Koziel, J.A. & Ahn, H. (2019). Evaluation of Semi-Continuous Pit Manure Recharge System Performance on Mitigation of Ammonia and Hydrogen Sulfide Emissions from a Swine Finishing Barn, Atmosphere, 10, pp. 170. DOI: 10.3390/atmos10040170
  • 29. Yunnen, C., Changshi, X. & Jinxia, N. (2016). Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge, Polish Journal of Environmental Studies, 25(1), pp. 419–425. DOI: 10.15244/pjoes/60859
  • 30. Zhou, X. & Zhang, Q. (2003). Measurements of odour and hydrogen sulfide emissions from swine barns, Canadian Biosystems Engineering, 45, pp. 6.13−6.18.
  • 31. Zong, C., Li, H. & Zhang, G. (2015). Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems, Agriculture, Ecosystems & Environment, 208, pp 94–105. DOI: 10.1016/j.agee.2015.04.031
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bb7e1bd-ee12-41c8-bcd7-8c6db94669e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.