PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody wstępnego przygotowania biomasy lignocelulozowej do fermentacji metanowej

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The methods of pretreatment of lignocellulosic substrates to methane fermentation
Języki publikacji
PL
Abstrakty
PL
Rośliny uprawne, biomasa pożniwna, odpady z produkcji rolniczej, bogate w substancje lignocelulozowe, są obiecującym surowcem do produkcji biogazu. Ograniczona podatność masy lignocelulozowej na biodegradację wymaga działań zwiększających biodostępność. Stosowane są różne techniki wstępnej obróbki w tym metody: mechaniczne tj. mielenie i cięcie, chemiczne tj. działanie zasadami, kwasami oraz rozpuszczalnikami organicznym, termiczne tj. działanie parą i gorącą wodą czy biologiczne tj. kiszenie czy inokulacja. W pracy przeprowadzono analizę metod wstępnego przygotowania biomasy lignocelulozowej do fermentacji metanowej oraz określono podatności substratu lignocelulozowego na trawienie.
EN
Crops, stubble biomass, waste from agricultural production, rich in lignocellulosic materials, are a promising feedstock for biogas production. Low biodegradation potential of lignocellulosic substrates requires treatment processes to enhance bioavailability. Various pretreatment methods are used: mechanical treatment i.e. grinding and cutting, chemical treatment with alkali, acids and organic solvents, thermal treatment i.e. steam or hot water and biological treatment i.e. pickling or inoculation. The present paper shows methods of pretreatment of lignocellulosic substrates to methane fermentation, moreover susceptibility of lignocellulosic substrate for digestion was determined.
Rocznik
Tom
Strony
269--273
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Biotechnologii w Ochronie Środowiska, ul. Słoneczna 45 G, 10-709 Olsztyn
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Biotechnologii w Ochronie Środowiska, ul. Słoneczna 45 G, 10-709 Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Biotechnologii w Ochronie Środowiska, ul. Słoneczna 45 G, 10-709 Olsztyn
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Biotechnologii w Ochronie Środowiska, ul. Słoneczna 45 G, 10-709 Olsztyn
Bibliografia
  • [1] Alizadeh H., Teymouri F., Gilbert T.I., Dale B.E. 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 121-124: 1133-1141.
  • [2] Bagi Z., Ács N., Bálint B., Horváth., L., Dobó K., Perei K. R., Rákhely G., Kornél K. L. 2007. Biotechnological intensification of biogas production. Appl. Microbiol. Biotechnol. 76: 473-482.
  • [3] Benjamin M.M., Woods S.L., Ferguson J.F. 1984. Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res. 18 (5): 601-607.
  • [4] Bobleter O. 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19: 797-841.
  • [5] Brownell H.H., Yu E.K.C., Saddler J.N. 1986. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol. Bioeng. 28: 792-801.
  • [6] Chang V.S., Nagwani M., Kim C., Holtzapple T. 2001. Oxidative lime pretreatment of high-lignin biomass. Appl. Biochem. Biotechnol. 94: 1-28.
  • [7] Dehkhoda A. 2008. Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fedbatch using flocculating Saccharomyces cerevisiae. Master thesis, Industrial Biotechnology Boras University and SEKAB E-Technology, Sweden.
  • [8] Delgenés J.P., Penaud V., Moletta R. 2002. Pretreatments for the enhancement of anaerobic digestion of solid wastes Chapter 8. In: Biomethanization of the Organic Fraction of Municipal Solid Wastes. IWA Publishing, pp. 201-228.
  • [9] Fengel D., Wegener G. 1984. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin.
  • [10] Fox M.H., Noike T., Ohki T. 2003. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci. Technol. 48 (4): 77-84.
  • [11] Frigon J.C., Mehta P., Guiot S.R. 2011. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenerg. 21: 1-11.
  • [12] Gossett J.M., Stuckey D.C., Owen W.F., Mccarty P.L. 1982. Heat treatment and anaerobic digestion of refuse. J. Environ. Eng. Div. 108: 437-454.
  • [13] Gould J.M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 26: 46-52.
  • [14] Gray M.C., Converse A.O., Wyman C.E. 2003. Sugar monomer and oligomer solubility. Data and predictions for application to biomass hydrolysis. Appl. Biochem. Biotechnol. 105-108: 179-193.
  • [15] Gregg D., Saddler J.N. 1996. A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl. Biochem. Biotechnol. 1: 711-727.
  • [16] Grous W.R., Converse A.O., Grethlein H.E. 1986. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microbiol. Technol. 8: 274-280.
  • [ 17] Hendriks A.T.W.M., Zeeman G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass Bioresour. Technol. 100: 10-18.
  • [18] Jacobsen, S.E., Wyman, C.E. 2002. Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind. Eng. Chem. Res. 41: 1454-1461.
  • [18] Jędrczak A. 2007, Biologiczne Przetwarzanie odpadów Wydawnictwo Naukowe PWN.
  • [19] Jin Y., Hu Z., Wen Z. 2009. Enhancing anaerobic digestibility and phosphorus recovery of diary manure through microwave-based thermochemical pretreatment. Water. Res. 43: 3493-3502.
  • [20] Kaar, W.E., Holtzapple, M.T., 2000. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy 18 (3): 189-199.
  • [21] Kim T.H., Lee Y.Y., 2005. Pretreatment of com stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 121-124: 1119-1132.
  • [22] Klinke H.B., Ahring B.K., Schmidt A.S., Thomsen A.B., 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol. 82 (1): 15-26.
  • [23] Ladicsh M.R., Lin K.M., Voloch M., Tsao G.T. 1983. Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology 5: 82-102.
  • [24] Laser M., Schulman D., Allen S.G., Lichwa J., Antal Jr.M.J., Lynd I.R. 2002. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 81: 33-44.
  • [25] Lawther J.M., Sun R., Banks W.B. 1996. Effect of steam treatment on the chemical composition of wheat straw. Holzforschung 50: 365-371.
  • [26] Lechner B.E., Papinutti V.L. 2006. Production of lignocellulosic enzymes during growth and fruiting of the edible fimgus Lentinus tigrinus on wheat straw. Process Biochemistry 4: 5945-988.
  • [27] Lee D., Owens V.N., Boe A., Jeranyama P. 2007. Composition of herbaceous biomass feedstocks. South Dakota State University Publication.
  • [28] Li J., Henriksson G., Gellerstedt G. 2005. Carbohydrate reactions during high temperature steam treatment of Aspen wood. Appl. Biochem. Bioeng. 125: 175-188.
  • [29] Liu C., Wyman C.E. 2003. The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from com stover. Ind. Eng. Chem. Res. 42: 5409-5416.
  • 30] Mosier N., Hendrickson R., Ho, N., Sedlak M., Ladisch M.R. 2005. Optimization of pH controlled liquid hot water pretreatment of com stover. Bioresour. Technol. 96: 1986-1993.
  • [30] Negro M.J., Manzanares P., 0liva J.M., Ballesteros I., Ballesteros M. 2003. Changes in various physical chemical parameters of Pinus Pinaster wood after steam explosion pretreatment. Biomass Bioenergy 2: 301-308.
  • [31] Ramos L.P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova. 26 (6): 863-871.
  • [32] Rogalinski T., Ingram T., Brunner G. 2008. Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J. Supercrit. Fluid. 47: 54-63.
  • [33] Saxena R, Adhikari D, Goyal H. 2009. Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energy Rev. 13: 167-78.
  • [34] Taherzadeh M.J., Karimi K. 2007. Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources. 2: 707-738.
  • [35] Weil J.R., Sarikaya A., Rau S.L., Goebz J., Lasisch C.M., Brwer M., Hendrickson R., Tadisch M.R. 1998. Pretreatemnet of com fiber by pressure cooking in water. Appl. Biochem. Biotechnol. 73: 1-17.
  • [36] Xiao W., Clarkson W. W. 1997. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8: 61-66.
  • [37] Yaman S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45: 651-671.
  • [38] Yang B., Wyman C.E. 2004. Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of Com Stover Cellulose. Biotechnol. Bioeng. 86 (1): 88-95.
  • [39] Yoshida H., Tokumoto H., Ishii K., Ishii R. 2009. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment. Bioresour. Technol. 100: 2933-2939.
  • [40] Zheng Y., Lin H.M., Tsao G.T. 1998. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol. Progr. 14: 890-896.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bb63d32-94c8-4183-bfce-2a019b839b55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.