PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wysokorozdzielcza krystalografia makromolekuł

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
High resolution crystallography of macromolecules
Języki publikacji
PL
Abstrakty
EN
The recent developments and availability of modern third-generation synchrotron radiation facilities have a huge impact on macromolecular X-ray crystallography. In connection with a number of methodological improvements and new crystallographic software ranging from data processing to refinement, a unique opportunity has arisen to determine the macromolecular structures with unprecedented high resolution and quality, at a level traditionally reserved for small molecules. At this resolution, individual atoms are clearly resolved and fine details of the structures become visible directly in the electron density maps. The great importance of such structures is the possibility of having broader insights into macromolecule function. At very high resolution, hydrogen atoms can be seen in electron density maps and the detailed information about the protonation states of catalytically important residues can be studied, what often is critical for full understanding of enzymatic reactions. Atomic resolution gives the opportunity for clear definition of multiple conformations, although the proportion of disordered residues is higher at higher resolution, and the disorder is seen as distinct alternative conformations. Water in macromolecular crystal plays an important role in macromolecule’s function and stabilization. Ultrahigh resolution data allows to refine water molecules with anisotropic displacement parameters and refine them with fractional occupancies. In this situation analyzing the subtle hydrogen bond network, involving precisely located water molecules, is possible. Atomic resolution structures can be refined without or with only very weak stereochemical restraints. Macromolecular models refined at ultrahigh resolutions, for well ordered structures, can be used for validation and improvement of stereochemical restraint libraries, commonly used during refinement of macromolecular structures.
Rocznik
Strony
587--607
Opis fizyczny
Bibliogr. 57 poz., schem., wykr.
Twórcy
autor
  • Zakład Krystalografii, Wydział Chemii UAM ul. Grunwaldzka 6, 60-780 Poznań
  • Centrum Badań Biokrystalograficznych, Instytut Chemii Bioorganicznej PAN ul. Noskowskiego 12/14, 61-704 Poznań
Bibliografia
  • [1] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucleic Acids Res., 2000, 28, 235.
  • [2] G.M. Sheldrick, Acta Cryst., 1990, A46, 467.
  • [3] A. McPherson, Cold Spring Harbor Laboratory NY, Cold Spring Harbor Laboratory Press, 1999.
  • [4] A. Schmidt, M. Teeter, E. Weckert, V.S. Lamzin, Acta Cryst., 2011, F67, 424.
  • [5] E.I. Howard, R. Sanishvili R, R.E. Cachau, A. Mitschler, B. Chevrier, P. Barth, V. Lamour, M. Van Zandt, E. Sibley, C. Bon, D. Moras, T.R. Schneider, A. Joachimiak, A. Podjarny, Proteins. 2004, 55, 792.
  • [6] M. Gilski, Acta Phys. Polon., 2008, A114, 331.
  • [7] K.S. Paithankar, R.L. Owen, E.F. Garman E.F., J. Synch. Rad., 2009, 16, 152.
  • [8] A.N. Popov, G.P. Bourenkov, Acta Crystallogr. D59, 2003, 1145.
  • [9] Z. Otwinowski, W. Minor, Methods Enzymol., 1997, 276, 307.
  • [10] A.G.W. Leslie, Int CCP4/ESF-EACBM Newsl. Protein Crystallogr., 1992, 26.
  • [11] M. Jaskolski, Advancing Methods for Biomolecular Crystallography, R. Read, A.G. Urzhumtsev, V.Y. Lunin (Red.), Springer, 2013.
  • [12] J. Aishima, R.L. Owen, D. Axford, E. Shepherd, G. Winter, K. Levik, P. Gibbons, et al., Acta Cryst., 2010, D66, 1032.
  • [13] M. Gilski, Synchr. Radiat. Nat. Sci., 2007, 6, 95.
  • [14] P. Evans, Science, 2012, 336, 986.
  • [15] P.A. Karplus, K. Diederichs, Science, 2012, 336, 1030.
  • [16] M.S. Weiss, J. Appl. Cryst., 2001, 34, 130.
  • [17] W. Kabsch, Acta Cryst., 2010, D66, 125.
  • [18] M.G. Rossmann & D.M. Blow, Acta Cryst., 1962, 15, 24.
  • [19] Z. Dauter, M. Jaskolski, Promieniowanie synchrotronowe w spektroskopii i badaniach strukturalnych. Wybrane zagadnienia, B.J. Kowalski, W. Paszkowicz, E.A. Gorlich (Red.), Krakow, 2011, s. 301.
  • [20] B.-C. Wang, Methods Enzymol., 1985, 115, 90.
  • [21] Z. Dauter, M. Dauter, E. de La Fortelle, G. Bricogne, G.M. Sheldrick, J. Mol. Biol., 1999, 289, 83.
  • [22] Z. Dauter, D.A. Adamiak, Acta Cryst., 2001, D57, 990.
  • [23] H. Hauptman, J. Karle, Acta Cryst., 1955, 8, 355.
  • [24] C. Dumas, A. van der Lee, Acta Cryst., D64, 2008, 864.
  • [25] C.M. Weeks, G.T. DeTitta, H.A. Hauptman, P. Thuman, R. Miller, Acta Cryst., 1994, A50, 210.
  • [26] G.M. Sheldrick, R.O. Gould, Acta Cryst., 1995, B51, 423.
  • [27] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, G.R. Spagna, J. Appl. Cryst., 2005, 38, 381.
  • [28] K. Cowtan, Acta Cryst., 2006, D62, 1002.
  • [29] G.G. Langer, S. Hazledine, T. Wiegels, C. Carolan, V.S. Lamzin, Acta Cryst., 2013, D69, 635.
  • [30] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart, Acta Cryst., 2010, D66, 213.
  • [31] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Acta Cryst., 2010, D66, 486.
  • [32] G.N. Murshudov, A.A. Vagin, E.J. Dodson, Acta Cryst., 1997, D53, 240.
  • [33] P.D. Adams, R.W. Grosse-Kunstleve, L-W. Hung, T.R. Ioerger, A.J. McCoy, N.W. Moriarty, R.J. Read, J.C. Sacchettini, N.K. Sauter, T.C. Terwilliger, Acta Cryst., 2002, D58, 1948.
  • [34] G.M. Sheldrick, Acta Cryst A64, 2008, 112.
  • [35] Z. Dauter, V.S. Lamzin, K.S. Wilson, Curr. Opin. Struct. Biol., 1995, 5, 784.
  • [36] K.A. Kantardjieff, B. Rupp, Protein Sci., 2003, 12, 1865.
  • [37] A. Wlodawer, W. Minor, Z. Dauter, M. Jaskolski, FEBS J., 2008, 275, 1.
  • [38] K. Brzezinski, A. Brzuszkiewicz, M. Dauter, M. Kubicki, M. Jaskolski, Z. Dauter, Nucleic Acids Res., 2011, 39, 6238.
  • [39] P. Drozdzal, M. Gilski, R. Kierzek, L. Lomozik, M. Jaskolski, Acta Cryst., 2013, D69, 1180.
  • [40] W.R. Rypniewski, P.R. Ostergaard, M. Norregaard-Madsen, M. Dauter, K.S. Wilson, Acta Cryst. 2001, D57, 8.
  • [41] I. Kursula, R.K. Wierenga, J. Biol. Chem., 2003, 278, 9544.
  • [42] M. Bejger, B. Imiolczyk, D. Clavel, M. Gilski, A. Pajak, F. Marsolais, M. Jaskolski, Acta Cryst. D, 2014, in press.
  • [43] C. Jelsch, M.M. Teeter, V. Lamzin, V. Pichon-Pesme, R.H. Blessing, C. Lecomte, Proc. Natl. Acad. Sci. USA, 2000, 97, 3171.
  • [44] B.S. Kang, Y. Devedjiev, U. Derewenda, Z.S. Derewenda, J. Mol. Biol., 2004, 338, 483.
  • [45] J.H. Konnert, W.A. Hendrickson, Acta Cryst., 1980, A36, 344.
  • [46] R.A. Engh, R. Huber, Acta Cryst., 1991, A47, 392.
  • [47] M. Jaskolski, M. Gilski, Z. Dauter, A. Wlodawer, Acta Cryst., 2007, D63, 611.
  • [48] J. Koepke, E.I. Scharff, C. Lucke, H. Ruterjans, G. Fritzsch, Acta Cryst., 2003, D59, 1744.
  • [49] L. Esposito, L. Vitagliano, L. Mazzarella, Protein Pept. Lett. 2002, 9, 95.
  • [50] A. Addlagatta, H. Czapinska, S. Krzywda, J. Otlewski, M. Jaskolski, Acta Cryst., 2001, D57, 649.
  • [51] L. Esposito, L. Vitagliano, A. Zagari, L. Mazzarella, Protein Eng., 2000, 13, 825.
  • [52] B. Stec, Acta Cryst., 2007, D63, 1113.
  • [53] I.J. Tickle, Acta Cryst., 2007, D63, 1274.
  • [54] M. Jaskolski, M. Gilski, Z. Dauter, A. Wlodawer, Acta Cryst., 2007, D63, 1282.
  • [55] D.E. Tronrund P.A. Karplus, Acta Cryst., 2011, D67, 699.
  • [56] N.K. Hansen, P. Coppens, Acta Cryst., 1978, A34, 909.
  • [57] C. Jelsch, B. Guillot, A. Lagoutte, C. Lecomte, J. Appl. Cryst., 2005, 38, 38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bb59ee6-71cf-46d1-90e9-c9219bf668ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.