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Abstract
The paper analyses the process of post-mining displacements generated by underground mining. Innovative mathematical 
structures for the modeling of hazard field emission were developed as strong solutions to partial differential equations in R3+1.  
Moreover, a stochastic equation in L2(Ω) (probabilistic space) was defined and applied as a model that takes into account the 
randomness of the process. Monitoring of a mining area based on solutions in the GNSS technology and classical geodesy sup-
ports the analysis of topological transformations of a given subspace. The data was archived and stored in digital form and then 
analyzed in many ways. The quality of the representation (measurements and modeling) was estimated with the use of incre-
mental statistics. Thus, obtained distributions of density function are not ranked as normal distribution. The performed analyses 
make it possible to predict the optimal scenarios for post-mining environmental hazards.

ODWZOROWANIE SCEN RZECZYWISTYCH  DESTRUKCJI GÓROTWORU –  
INTELIGENTNE WSPOMAGANIE

Słowa kluczowe: inteligencja obliczeniowa, modelowanie, równania różniczkowe i stochastyczne, proces deformacji górotworu 

Abstrakt
W artykule przeanalizowano proces przemieszczeń pogórniczych generowanych przez górnictwo podziemne. Innowacyjne 
struktury matematyczne do modelowania emisji pola zagrożenia opracowano jako silne rozwiązania równań różniczkowych 
cząstkowych w R3+1. Ponadto zdefiniowano i zastosowano równanie stochastyczne w L2(Ω) (przestrzeni probabilistycznej) jako 
model uwzględniający losowość procesu. Monitoring obszaru górniczego, w oparciu o rozwiązania w technologii GNSS i kla-
sycznej geodezji, wspomaga analizę przekształceń topologicznych danej podprzestrzeni. Dane archiwizowano i przechowywano 
w formie cyfrowej, a następnie analizowano na wiele sposobów. Jakość reprezentacji (pomiary i modelowanie) oszacowano za 
pomocą statystyk przyrostowych. Tak uzyskane rozkłady funkcji gęstości nie są klasyfikowane jako rozkład normalny. Prze-
prowadzone analizy pozwalają przewidzieć optymalne scenariusze zagrożeń dla środowiska pogórniczego.

1.	 INTRODUCTION

The mappings of the analyzed process are most often 
solutions to differential equations. On the other hand, 
the registration of the subspace topology, as a rule, does 

not coincide with the eigenstate of the operator of the 
examined feature – the knowledge about the process is 
basically statistical knowledge.

The article characterizes the description of the rock 
mass deformation process generated by mining in terms 
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of qualitative and deterministic modeling. Moreover, an 
attempt was made to define and describe the phenom-
enon as a stochastic process and to optimize the model 
in relation to the measurement.

The problem is formulated as follows:

For the real X process with càdlàg trajectories,  
the problem of defining the Y model was considered, 
the trajectories of which are uniformly close to the 
trajectories of the X process and have the smallest 

possible oscillation.

Optimization of the stochastic description was car-
ried out with intelligent support. Registration of sub-
space topology is a procedure carried out in hardware 
systems. It was assumed that the representations and 
observations of the process would allow for the optimal 
creation of scenarios related to environmental hazards. 
The conducted empirical analyzes and mathematical 
modeling of the considered process are part of the so-
called intelligent procedures

In research projects, even the best methodology does 
not prevent errors [1], [14] – there is a cognitive gap.

2.	 THE METHOD OF THE PROCESS 
REPRESENTATION AND ITS 
GENERALIZATION

The existing models of post-mining deformation de-
scription generate smooth macroscopic projections. The 
results of the observation of the real scene indicate that 
both the basins and the trajectories in the distinguished 
subspace are not smooth – often described as chaotic – 
which will be shown. This subspace is here a topolog-
ical subspace. 

Adequate descriptive knowledge was presented in 
relation to the examined fragment of reality. The de-
termining ways of using knowledge in this area were 
indicated. 

2.1.	Evolutionary representations of mining area 
deformation –  differential equations

The subspace of the rock mass in the vicinity of 
mining operations is a physical structure composed  
of a sequence of geological layers that make up the  
pile – Fig. 1. 
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Fig. 1. Hypothetical configuration of the physical structure of the rock mass
Rys. 1. Hipotetyczna konfiguracja budowy fizykalnej górotworu 

The scene of the subspace of the rock mass  
in the vicinity of the mining excavation.
(www source. images. mining damage) 

Scena podprzestrzeni górotworu w otoczeniu 
wyrobiska górniczego 
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For each subset of the “L” layers, an attempt was 
made to arrange the layers of the stack in the area of ​​un-
derground mining so that they would not be destroyed. 
For this, consider a stack and some two layers from that 
stack “i” and “j”. Let “i” be lower in the stack and M 
denote the weight of the layers over “j” and “o” the load 
on the stack. So we can write down:

oi + mi ≥ mi + M + mi > oj + Mj oi + mi  
–  layer coefficient “i”

Hence, it follows that the adjacent layers should not 
be transposed only when the higher layer has a low-
er coefficient – otherwise we replace them, obtaining 
a sorted set as an optimal structure (Fig. 1, 2). If the 
actual arrangement of the rock mass layers can be iden-
tified with a sorted pile, there is a chance that the rock 
mass layers will deflect with most minimal destruction 
– which can be described as quasi-stability.

It was assumed that the rock mass above the excava-
tion in space R2 is a stack of thin homogeneous blocks 
of unit length – see: Fig. 2. Single blocks are shifted in 
relation to each other in individual layers by xi units. 
Such a construction – if no other forces act – is in equi-
librium. The threat to the structure (loss of stability) 
appears when the concentrated force acts here.

The segments x1 ,..., xn form a certain sequence be-
longing to the real numbers, so we can introduce a func-
tion M (xi, xi+1) – such that the inequality holds: 

           min (xi, xi+1) ≤ M (xi, xi+1) ≤ max (xi, xi+1)	      (*) 

where: xi, xi+1 ∈ Δ; Δ – interval,

which makes it possible to determine the following 
terms of the sequence.

A well-organized cognitive process in science con-
sists in the proper generalization of experimental data 
and constructing appropriate theories. The interpreta-
tion of experimental data should be unambiguous – then 
it firmly shapes the framework of scientific theories.

The article considers the following problems: mod-
elling of the process of the medium destruction, obser-
vation of the process, visualization and analysis of rep-
resentations in the sense of minimizing deformation.

Due to the transitivity of the conjunction of logical 
equivalence, the quality of the representation is not well 
defined in terms of theory. This means that the theoret-
ical tools at our disposal for proving do not ensure that 
in general we characterize the problem well.

The dominant majority of the processes taking place 
in nature are space-time phenomena. In general, the 
models of the processes are partial differential equa-
tions that are very difficult to solve and usually require 
simplifying assumptions about the geometry of space-
time [3], [6]. The solutions to these equations then take 
different forms and lead to different interpretations of 
the same observational data and the proper characteris-
tics of the problem in general.

Currently, the most common indicators that mea-
sure the state of post-mining deformation are the point 
displacement vectors (u, v, w) and the appropriate dif-
ferential operations on these vectors (Euclidean geome-
try) – the representation according to S. Knothe [5], [6]:

The model of the displacement field description in  
R1 – according to S. Knothe:
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Fig. 2. Scheme presenting the discordance (packing) of rock blocks above the exploitation void
Rys. 2. Schemat ułożenia warstw skalnych (bloków) powyżej pustki ekspolatacyjnej
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Solution (2.1) has the following property: all trajec-
tories attain practically the same distribution – which 
results from the reference to constraints depending on 
time. In reality we do not obtain exactly the same dis-
tributions. The observed field of post-mining displace-
ments is randomly disturbed by the heterogeneity of 
the rock mass structure and the random distribution  
of stresses.

In turn, the modeling of the displacement vector in 
R n+1 (space-time) is illustrated by differential equations 
(2.3), [3], [5]. 

where: λ – integration variable; r – parameter; a ≤ S ≤  
b; Wmax – process constant

If b = a + δ then w(x, S) > 0, in practice if δ is small 
then w(x, S) = 0

The subarea of surface deformation of the mining 
ground can be defined as Sp ⊂ [a – r ≤ Sp ≤ b + r].

So, we can assume that w(x, S)is a random variable 
in such subarea. Now, if we introduce an event A such 
that P(A) > 0 and if we replace the ordinary probability 
with a conditional probability, we get [13]: 
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Solution (2.1) has the following property: all trajec-
tories attain practically the same distribution – which 
results from the reference to constraints depending on 
time. In reality we do not obtain exactly the same dis-
tributions. The observed field of post-mining displace-

ments is randomly disturbed by the heterogeneity of 
the rock mass structure and the random distribution of 
stresses.

In turn, the modeling of the displacement vector in 
R n+1 (space-time) is illustrated by differential equations 
(2.3) [3], [5]. 
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Solution (2.3) estimates the kinetics of the displace-
ment process without taking into account perturbations.

3.	 INTELLIGENT VISUALIZATION  
OF THE REAL SUBSPACE 

Intelligent visualization of the scene of terrain threats 
is an innovative concept in terms of theory and applica-
tion, which involves modeling process propagated in 
the physical space. The model of the process stream-
lines and supports multiple analyses and optimizes the 
management of the discussed processes. Environmental 
threat processes are subject to constant structural reor-
ganization. Hence, the modeling procedures need to be 
adapted to changing internal and external conditions. 
Dipolar procedure (visualization and mathematical 
modeling) as well as quaternions illustrate the actual 

The formation of period subsidence 
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Fig. 3. Distribution of the subsiding troughs ⊂ R3; Vsubsidence ← technology InSAR           
(*) Characteristic parameters of  the deformation subspace: Region I ^ II
Rys. 3. Rozkłady niecek obniżeniowych ⊂ R3; Vniecka ← technologia InSAR
(*) Charakterystyczne parametry podprzestrzeni deformacji (rejon I i II)
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state of the representation of image sampling as imple-
mented in computer animation. 
Intelligent support makes it possible to connect, com-
municate with each other and facilitates optimal man-
agement of the distributed network elements equipped 
with intelligent process recorders.
  Optimal registration (monitoring) of the geometry 
of the observed scene in 3D is based on the approx-
imation of the vector in the area of ​​the actual scene, 
the identification of a motion vector and the procedure 
computationally efficient and acceptable in terms of 
measurement.

Layer visualization of 3D scenes

The state of deformation of the central element is a de-
termination of the displacement of a subspace points – 
usually on the basis of distance measuring and leveling.

Optimal distribution of the points of observation net-
work – in the sense of maximizing the accuracy of esti-
mates of the derived parameter representation – includes:

Optimal distribution network observation points – 
in the sense of maximizing the accuracy of estimates 
derived parameter representation – includes:

–	 stationary points – measurement in a finite num-
ber of locations l1, l2 ..., lk

–	 dynamic points – measurement of a finite number 
of moments. t1, t2 ..., tM 

–	 incomplete data supplemented by two objects 
classes similarities.

Advanced Technology Registration (e.g., receiver 
GNSS) and digital signal processing, provide high lev-
els of resolution, accuracy and repeatability and proto-
col (I P).

Application layer

Performed procedures (illustrated by Fig. 4):
•	 numerical modeling of the emissions of the gen-

erated hazard fields,
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Fig. 4. The conceptual structure concerning the measurement part of the monitoring system in the mining area
Rys. 4. Struktura ideowa części pomiarowej systemu monitoringu na terenie górniczym
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•	 process registration system in intelligent config-
uration,

•	 optimization of the technology of core-shell struc-
tures and formal analysis, 

•	 application solutions in the decision-making area.

The modular structure of the measurement part of 
the system facilitates the control of large areas and the 
gradual increase of the system capabilities – as present-
ed in Fig. 4. [10]. Stations equipped with measuring 
concentrators make it possible to collect and store the 
recorded parameters characterizing the destruction of 
subspace. Permanently collected data concerning the 
location of reference stations located in such way can 
be used at the post-processing stage in the monitored 
area, which should significantly improve the quality of 
the obtained observation results.

Optimization of the location of measuring sensors	

The properties of the measurement track in the case 
of the observation of an active mining area are especial-
ly important as regards the visualization, archiving the 
measurement results and object identification in order 
to construct an optimal mathematical model of the ana-
lyzed process – especially a random one.

The application based on a map associated with the 
monitored area appears to be a layered structure com-
prising:

–	 the layer of mining fields,
–	 the layer of sub-area deformation,
–	 sensor layer,
–	 the layer of object topography, 
–	 the layer of the process representation H(u, v, w), 

based on the model.
Let Θ ⊂ (w1, w1, ... wn) – be a set of observation points 
monitoring the dislocation in the Ω area.

Each value of the expected reduction in the Ω set can 
be characterized as

( )i
o
ii ww σ,⊂

where:
wi

o	 – the expected value of the displacement at point i,
ςi	 – the deviation from the expected value of the dis- 

    placement. 

Covering the observation area O with the set of 
points (xi ← wi) is acceptable if: ∆≤−∀ =

o
iini ww,...,2,1 ;  

where: Δ – permissible deviation.

For a highly diversified surface of the mining area 
(altitude), a semivariogram analysis is used. The loca-
tion of the sensors is associated with scattered points 
located in a quasi-optimal manner. The process of rock 
mass displacement with state coordinates is based on 
the transformation of one state into another through the 
destruction of the medium.

4.	 THE PROCESS OF SCENE 
DISPLACEMENT IN 3D

Processes of rock mass displacement with state co-
ordinates are based on the transformation of one state 
into another through the destruction of the medium.

This knowledge makes it possible to predict the 
course and effects of the phenomenon in various condi-
tions, either controlled or uncontrolled by man.

Global properties are expressed as integrals stretched 
over the volume occupied by the system. The material 
derivative of the global quantity is given by the so-called 
general theorem of transporting extensive quantities.

All information concerning the vector field is car-
ried by n functions Xi whose value encodes the value 
of the vector's coordinates. If the vector field X is suit-
ably smooth (e.g. Class C1), then the initial problem  
is locally well positioned. This means that for each  
point x  ∈  M there is one local integral curve, fx(t) 
where 〈–ε, ε〉 ⊃ t → fx(t) ∈ Mstarting from this point  
fx(0)= x and satisfying the initial condition fx(0) = x X ⊄ 
Class C1 As a rule, a vector field X ⊄ Class C1

4.1. The process of scene displacement in 3D

Percolations – Probabilistic model 

Classical mathematics uses smooth projections. The 
observation results indicate that the process trajectories 
are irregular, often chaotic. Chaos theory eliminates La-
place's statement concerning the predictability of a phe-
nomenon.

Consider the rock mass fragment X ⊂ Z 2 as a set of 
elements {–n, –n + 1, ..., n – 1, n} (Fig. 5)

If each edge of the set X is open, deleting the element 
xi will cause the dislocation of element wi, otherwise 
a path of open edges connecting wi to the element x is 
necessary in order that wi may appear (see Fig. 5).
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There is a principle in physics assuming that it is 
impossible to determine the exact state (event) of the 
process. However, it can be assumed that the existing 
states are equally probable (L. Boltzmann, an Austrian 
physicist) [10]. In the physical system – at each time 
step – it is possible to distinguish certain quantities that 
are measurable. These values ​​make it possible to deter-
mine the probability distribution of an event.

Probabilistic interpretation

Let (Ω, Σ, P) – probabilistic space; P(Ω) = 1.
  (X, A, μ) – measurable space.

If mapping: ξi : Ω → X if for this ξ–1 (A)∈ Σ, 

A ∈ A and Φξ(A) = P(ξ–1{A}) and 

Φξ(X) = P(ξ–1{X})

Continuous decomposition: f : X → R+ this is:

Φξ(X) = P(ξ–1{X}); Whereas the measure: 

μ(A1 × A2) = μ1(A1) ∩ μ(A2) A : = A1 × A2

Φξ (A1 × A2) = P{(ξ1, ξ2) ∈ A1 × A2 =

= P(ξ1 ∈ A1 ∩ ξ2 ∈ A2)

If then        



121 1 2

22112211 )(
AA A A

dxxfdxxfxfxf       

The macroscopic states of the process representation 
are important, there is no exact solution to the problem 
(sometimes heuristic description is applied). 

Definition: 
The probability that starting with xi X ⊄ Class C1 

we reach point wi for the first time in n steps – where  
(n ≥ 1) and {ξt}t>0 – can be written as (i): 

)(),...,(
111 111 ntnttntnt iiPiiiP

nnnn
======

++ ++
ξξξξξ  (i)

We designate a random variable here, where τ – the 
stopping moment, ),0[:  , the random variable 
being such that the following condition is satisfied:                            

       tt   t = Nn  tn
t 1  (ii)

Thus, the probabilistic space Ω = {ω1, ω2 ,..., ωk} 
is a finite set xi, the family of events Σ = 2Ω, while the 
probabilistic measure is such that:

                       0iP     i= 1, 2, . . .,k     i = 1, 2, ..., k              (iii)                          

We introduce σ – field Σ t t ∈ {0,1, ..., T}, which 
we interpret as a set of knowledge about the process 
obtained up to the moment t. We establish that any  
σ ⊆ ∑ as well as any non-empty set U and σ – field con-
stitute a set of events observable in the analyzed sub-
space up to the moment (t – 1) (or t, respectively). The 
modeling of the transformations of post-mining center 
(a stochastic process) [11], [14] is understood as a fam-

ily of random vectors 










 m

ttt XXX ,...,, 21  t ∈ T rep-

resenting type: ∫
T

ttd
0

ωω ; ( )∑Ω P,,  – probability space

-n      n 
iw

ix
Fig. 5. The conceptual structure of a random displacement process; wi – event
Rys. 5. Struktura ideowa losowego procesu przemieszczeń; wi – zdarzenie
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  Approximation Lemma:
1)  n   n   is a discrete set
2)       1 nn      Nn   
3)      n      

We call these moments predictable.
If the process {Xt}τ is uniformly integrable then it 

is possible to approximate the process for the moment 
(ti+1). The family {Xt}τ is uniformly integrable ⇔ when:

–    t
t

XEsup  ← (by definition)

–  0   0   A     AP      
A

J
J

dPX sup

    0   0   A     AP      
A

J
J

dPX sup      

The measure of the set over which we are inte- 
grating:

   
M
CMX

Theorem

If   t
t

XEsup  then the sequence {Xt} – almost cer-
tainly converges to integrable random variable E(Xt) = 
= E(Xt

+) + E(Xt
–).

A stochastic process XT: = (X(t)) is a collection of 
random variables X(t), indexed with the same t values, ​​
defined in the same probability space. For two differ-
ent states of exploitation we can distinguish two such 
probability spaces: (Ω1, Σ1, P1) or (Ω2, Σ2, P2), where Ω –  
the space of elementary events, Σ – σ-algebra, (Σt) – 
filtration, P – measure. The stochastic process is also 
a random variable.

Contamination of models (stacking, Stacked Gen-
eralization) is used in predictive data mining – treat-
ed as relationships of predictions concerning various 
models. The assignment model was implemented by the 
loss function (with reference to the following methods: 
quasi-Newton method, Simplex, Hooke-Jeeves method 
and Rosenbrock method [7], [8]). The adoption of a par-
ticular form of qualified model was based on the distri-
bution of residues at both the modeling and verification 
stages – under the following condition: the expected 
value of about zero residues.

It cannot be unequivocally proved that the model is 
true. There are no reliable conclusions about the under-
lying relationships integrating the models.

Measurements of free surfaces are performed on 
a set of points of the space, setting coordinates for those 
points (xi, yi, zi)n

i=1 – monitoring. Observations of the 
mining area – as an undertaking of control – measur-
ing character – are applied for the verification of a de-
formation model of a particular mining subarea. Those 
observations are also used as the basis for the analysis 
of the topological transformation of the given region. 
Convergence of the process Yi → Y in topology L2 is the 
convergence in relation to probability, i.e. ∃ε > 0, such 
that (4.1) holds:

                     0 0}):({lim 


 YYP ii
         (4.1) 
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	          – discrete measurement  	            (4.2)     
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                    – continuous measurement	 (4.3)

The measurement points are usually stationary, 
while the observations are carried out in a finite num-
ber of measurement sessions t1, ..., tk, / as a result the 
following relationship (4.4) holds:
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,...1


 ;      ),( tx   

	                 – random noise.	 (4.4)

The conditions of the non-contradictory theory 
should be fulfilled here. 

Algorithmically, the modeling procedures state that:
–	 each state of exploitation development is conju-

gate to the defining process,
–	 there is a transition between states,
–	 previous state   (prefiksu) operation   state of the next 

event, 
–	 initial state l0 – is an instance of the process in the 

specification clause,
–	 final state lN → END without defining further ac-

tions.

The probability of generating the observation vector 
Ot by the M model is given as follows:

              tsttt OPOPOPOP ,...,21   (4.5)
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Note that the final process (deformation) takes place 
after the destruction of the structure of all layers above 
the exploited seam.

The state of the occurrence of the event (deforma-
tion) can be written as (4.6):

		  Ωa = {x: f(x) ≤ .0}	 (4.6)

f (x) – resistance to destruction of the structure of a part  
          of the rock mass layer

The certainty (uncertainty) of the hypothesis A is 
represented by the interval

belief ~ plausibility )()( APlABel   





AB
BmABel )()(  – belief function; 





0

)()(
AB

BmAPl  – credibility function

Accurate determination of the process states is prac-
tically impossible – hence the analyses are carried out in 
accordance with the stochastic approach. The orders de-
termined by the stochastic dominance, the risk measure 
(if it maintains the first-order stochastic dominance) and 
the probability measure concerning the product seem to 
be particularly significant here in terms of the theory. 
The analysis of the measurement results shows that the 
trajectories of the process of medium deformation are 
usually characterized by limited fluctuations.

5.	 STOCHASTIC PROCESS

The real process must have a “non-zero” output, be-
cause through the output the existence of the process is 
revealed. There is a causal relationship between the con-
cepts of “input” and “output”, in the sense that know-
ing (observing) the input one can usually determine the 
output. The reverse correlation is generally ambiguous 
(does not hold).

Conceptual Structure: Stochastic process, condition-
al expected value

Mathematics Modules:
–	 Probabilistic: Random variables, Distributions, 

Probability, Probability axioms, Bayes' rule, 
Chain rule, Random functions.

 –	Parameter estimation: Distance minimization, 
Parameter value estimation, MLE (maximum 
probability).

5.1.	 Active mining area – characteristics

The processes of mining area deformation, observed 
based on the measurements, are finite sets characterized 
by irregularity – often referred to as chaotic phenome-
na. According to Devaney’s mathematical interpretation 
[1], [6], [10] chaotic phenomena are characterized by 
the following properties: 

–	 they are transitive,
–	 they have a dense set of periodic points, 
–	 they are sensitive to changes in initial conditions

Transitivity means that the trajectories in any 
open set A are sent to each open set B. When pairs of 
non-empty open sets A, B ⊂ [0,1] and Sn (A) ∩ B ≠ 0 
then S : [0,1] → [0,1]. This means that for each open 
set B ⊂ [0,1] the trajectory started in A will be gen- 
erated.

Density of periodic points means that periodic points 
form such dense set that:     xxSkx k  11,0  . 
The orbits of periodic points are finite sets, where k – 
the base period of the point x. 

The property of sensitivity – ∀ representation O in 
the neighbourhood of the point x there is a point y and 
a natural number n that:      ySxS nn  , where  δ – 
the so-called constant of transformation S, sensitive to 
changes in initial conditions. It means that each subset 
of the open set [0, 1] contains arbitrarily close points 
(x, y), the trajectories of which differ significantly after 
some time. A slight disturbance is enough for the tra-
jectory to assume a different projection.

Transitivity and the existence of a dense set of pe-
riodic points generate sensitivity to initial conditions. 
In addition: transitivity and density of periodic points 
⊂ topology. The initial conditions are measured in na-
ture. Hence the implication that: chaos has a topological 
property (example – the Lorenz attractor). Deformation 
processes (components of the displacement field) are 
also phenomena of a measuring nature. The measures 
of the structure transformation are not additive.    

Algorithmic modeling procedures state:
–	 each state of exploitation development is project-

ed into the defining process
–	 there is a transition between states
–	 the previous state is an instance of the process in 

the specification clause
–	 final state END without defining further actions
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The state procedure makes it possible to describe the 
probability  ji xxP ,   of being in a state at moment t state 
xi and the probability  ji xxP ,   of transition from state xi  
to state xj which we can write:

      
     




n

j
ijj

i xxPtxP
dt

txdP
1

,
,    




n

j
jii xxPtxP

1
,  

      
     




n

j
ijj

i xxPtxP
dt

txdP
1

,
,    




n

j
jii xxPtxP

1
,        (5.1) 

The above equation can be interpreted as follows: 
the progress of time depends only on the current state of 
the system and is fully defined thanks to the knowledge 
of the transition probabilities. The first sum in equation 
(5.1) represents all transitions entering the state xi, while 
the second sum – all transitions coming from this state. 

The model is trained by rules and patterns, thus cre-
ating the autoassociator.

Differential equation and important concepts

If the process contains a random factor, the model 
of the process can be written as (5.2)

     

0

'

)0(
)())(,()(

xx
ttxtftx


        tt  )(     

		  – random quantity	            (5.2) 

For (5.2) we define a probabilistic space (Ω, Σ{Σt}t≥0 ; P),  
where {ξ}t≥0; and P : Σ → [0, 1], then yields

P(0) = 0, P(Ω) = 1; σ – algebra Σ on Ω is family {Σ}t≥0 

of subsets of Ω with the following properties: 0 ∈ Σ

Let us consider the general stochastic process [8], [10], 
[12]. 

The stochastic process ξ(t) is formulated as (5.3) [8]:

          
0)0(

)())(;())(;()(





 tdWttdtttbtd
            (5.3)

–	 t1 ≠ t2 ⇒ Wt1 and Wt2  are independent; E[Wt] for  
all t

–	 if E[Wt
2] = 1 then the function (t, ω) → Wt(ω);  

Wt – the Wiener process 

Let (5.3) be recorded as an integral formula ξ(t) over 
trajectories and as Itô’s integral:

  0)(  t

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      (5.4)

where: b, σ – meet Lipschitz conditions.

Uniqueness of the formula (5.4)

Let: ξt or t



  be the solution of (5.4) then yields: 
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(*)

It is essential for the analysis of the process {W}t 
that for t ≥ 0 the function should be right-continuous.

       
Observations and representation of the displace-

ment process:

Let us define two spaces in general sense:

Spaces: (Ω, Σ, P) – probability space; (X, A, μ) – mea-
surable space 

where: Ω – the space of elementary events, Σ – σ – 
algebra, (Σt) – filtration, P – probabilistic measure  
X∈ R (Rn) – state variable; A – min (σ – algebra);  
μ – measure.

Let representation ξi : Ω → X be the random 
quantity and let ξ–1(A) ∈ Σ then: P(Ω) = P(ξ–1(x)).  

If f : X → R then:    
A

dxxfAP  )(  , hence:  

f : X → [0,∞) and  
X

dxxf 1)()(   ; moreover, the mea- 

sure is defined as:    )()( dxxfAf   , for { } ⋅=→= ∑
=

=

k

i
i

k
ii xXxX

1
1 

{ } ⋅=→= ∑
=

=

k

i
i

k
ii xXxX

1
1 1

When there is a downward – sloping function, then 
the integral equation (5.4) may be written as (5.6). 













(5.5)
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The calculations in formula (5.5) are performed with 
the use of numerical methods. Solutions to partial dif-
ferential equations are characterized by chaotic beha- 
viour – which is related to the existence of an invariant 
measure μ(E); = μ(T–1(E)); where: T : X → X; E ∈ ∑; 
Σ – σ – set algebra .

The random measures of the processes:
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Using (5.3) we can write a multivariate stochastic dif-
ferential equation (5.6):
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Stochastic differential equation (5.6) represents the pro-
cess ξ(x,t) ∈ R2+1. Based on the multivariate Itô formula 
(5.6) can be written as (5.7): 
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Then the density of the invariant measure will be repre-
sented by the Frobenius – Perron operator [8].

The Wiener process may be expressed as an integral 
formula (5.8):

  TWfIdWW
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Tnntt  
0

2

2
1

2
1lim      2LH   (5.8)

The methods of representing knowledge in the form 
of probabilities are artificial intelligence techniques  
[12], [14]. 

An exact analytical solution of the equation (Fok-
ker-Planck) describing the evolution of the system is 
impossible, it is possible to approximate that: the sys-
tem can evolve from state (A) to state (B) with prob-
abilities (Pa, Pb). If there has been a destruction of the 
structure of several sub-areas which make up a given 
center then the sub-area generating ​the ​event and the 
probability of occurrence of this event can be deter-
mined as follows:
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Ωzi – sub-areas of destruction of the original structure  
of the medium, P(XA,...) – probabilistic measure. 

Knowledge about the process, its environment, 
cause-effect relationships and conditions regulating the 
analyzed events states that a probability measure cannot 
be precisely defined.

Therefore, in the article the support for the map-
ping of process states was based on neural network. The 
neural network model is mainly a processing function: 
compounding the scalar product of the input vector with 
the weight vector and the so-called activation function. 
Input weights are optimized in the course of network 
learning process.

Many different techniques were used during the im-
plementation of the algorithms, with particular regard 
to genetic approach that should be distinguished here.

6.	 INTELLIGENT SUPPORT 
REPRESENTATION 

The future cannot be accurately predicted as an event 
that is certain. Uncertainty results from the conditions 
of a specific event (process). Confidence regarding the 
event would mean that the outcome of the prediction is 
a determinant, and this is against the rules of physics. 
Therefore, the forecast result should be provided with 
a (probability) measure. Currently, almost every phe-
nomenon is recorded. Datasets contain a lot of interest-
ing information but are difficult to obtain with standard 
methods. 





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(5.6)
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Artificial intelligence algorithms – using databases 
from the past, generate a forecast result with a max. 
probability.

The knowledge base consists of “n” rules, each con-
taining “m” premises.

The model is trained using rules and patterns and 
creates a self-associator.

Mathematics Modules AI (Artificial Intelligence – tab. 1)

–	 Linear algebra: computational tool in artificial 
intelligence,

–	 Numerical methods: Optimization of weights  
in OR, 

	 Deep Learning Functions, Mapping Optimization 
→ Error minimization

–	 Training neural network in propagation mode 
	 Estimators ;:   

MLE

EstimatorValueSingle      
MAP

EstimatorValueMultiple   

		   	     
;:   

MLE

EstimatorValueSingle      
MAP

EstimatorValueMultiple  			            

Table 1. Intelligent Calculations (Artificial Intelligence Algo- 
rithms)
Tabela 1. Obliczenia inteligentne (Algorytmy sztucznej in-
teligencji)

Neurat networks Fuzzy logic Evolutionary  
algorithms

Rough sets Uncertain variables Probabilistic methods

Basic Approximation Theorem (Cybenko, 1989)

Let F be a continuous sigmoid function then the finite 
sum matrix assumes the following form:

    


N

j j
T
jj xwFxG

1
  

Finite sums are dense in the space of continuous func-
tions with n – variables on the unitary cube. 

Conclusion: A single-layer network with any contin-
uous activation function can approximate a continuous 
function with fixed accuracy (Unacceptable acronym 
DIDO).

A natural neuron works by producing an output only 
when the input signal exceeds a certain threshold. The 
bias value, like the input weights, is optimized in the 
network training process. The metric, as a parameter of 
the effectiveness of the feature detectors, carries infor-
mation on the frequency of repetitions of the selected 
feature in the images of the training dataset in various 
scenes. The result of input data detection is a task sce-
nario for neural networks in the training process [13], 
[14] (Fig. 6). Models initially learned on the set (data 
set) constitute the process of knowledge transfer and 
model tuning (transfer learning).

A “learning model” is any model that specifies the 
learning rules used by individual players and their in-
teraction in the course of the training process when this 
process is optimized iteratively.

Input Weights    StatesofSum

1x  
kw1  mk ,...,1

2x    
kw2  {Activation Function}    {Output} 

              u       Y            

y (u) 
     

Nx     
k
Nw         bias 

          artificial neuron 

g(u) 


N

i

k
iiwx

1

 

Fig. 6. The Structure (model) of Artificial Neural Network
Rys. 6. Model sztucznej sieci neuronowej
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Optimization of the power of input set 
  

Note that we should consider the observation result-
ing from the technical acronym: GIGO when preparing 
the input data (set X).

Input file X: X = [x1, x2,...,xN] is the basis of the out-
put file representation Y Model 

   WX

w

w
w

xxx
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N ,

.

.

.
,...,,

2

1

21 



























 ~ ModelY  

The specified input data does not affect uniformly 
the representation Y Model. Hence, it is important to cor-

rect the set   NKxx
K

j

o
selectionN

ii 





 


 ;

1
1  . The cor-

rection of the set X is necessary to ensure the optimal 
power of the input set. The optimal power of the input 
set X is: the power of a selected subset of the set X 







 o
X #   such that the following condition is satisfied: 

  
2ModeltMeasuremen YY   minimum; where: 


O
X 



 O

K

O

2

O

1 x,...,x,x  





 WX
O

, ~ ModelY  

Selected subset 





 o
X #  : = K. For K ⊂ N we define a function 

v(K) where the input set satisfies the following condi-
tions: 

v(K) ≈ Y;   Y = Y Measurement

v(K) = a . (#K) + (#K) . (#K – 1) . b;   v(1) = a
For any subsets of K, L ⊂ N if K ∩ L ≠ 0 
we obtain: vΓ (K ∩ L) ≥ vΓ(K)+vΓ(L)                          

(º)If the selected input subset is:
vΓ(K) + vΓ(N |K) = vΓ(K) + vΓ(L)
then the activation function vΓ(N) is additive ⇔
    




Ni
iN   

If K is a singleton {i} then for K ⊂ I   vΓ(K) = max. If 
there are series and the configuration 〈I, v〉 is an impu-
tation and if there exist natural numbers {α1, α2, ..., αn},  
then

  

                           
    

 


n

i

n

i
i iI

1 1
  

If {x1 < x2 < x3} then for λ ∈ (0, 1) we have: 
x2 = x1 + (1 – λ) . x3 	      

(ºº)

The conditions (º) and (ºº) make it possible to select 

a subset 






 O
X  

A neural network (SN) is a set of single processing 
units (so-called neurons) connected with each other, 
which from a mathematical point of view generate a de-
scription of a specific process – universal approxima-
tions [3], [12, [14] (Fig. 7). By the terms of Stone-Wei-
erstrass theorem, it can be shown that a network with 
tangensoidal nonlinear processing units can approxi-
mate any continuous function with arbitrarily small er-
ror – Fig. 7 (PACKETS: Matlab (MATrix LABoratory), 
Statistica, SAS [8]) 

It should be noted that in the process of representa-
tion the weight matrix: wi = n(i), n(i–1) and ∂wi = (n(i), n(i–1)) 
are particularly significant as regards the phenomenon 
modeling.

Equivalence of the stochastic process

Processes  niiy 1   and
n

i
iy

1









   are stochastically equiv-

alent if: Ii 0





 



ii yyP                            (*)

The sequence 


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


iy   converges stochastically to 

some random variable y ⇔ 
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

Fig. 7. Biological Model of the Neural Network (BNN)
Rys. 7. Biologiczny model sieci neuronowej 
The speed of the Human Brain ~ 1017 [operations/sec] 
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Artificial Neural Network – mathematical conversion 
units

Model of the Neural Network:
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(6.1) 

Updating weight values

                         


  ][1 ii
n
ii yy n

i 1                      (6.2)

 
               









1

1

0
0

iii

iii

wwIF
wwIF

           (6.3)

Learning parameter η:  
1

1



t

t    

Estimation error: iii yy


                                  (6.4) 
m
iy 1  – Measurement results; m

iy 1



  – Modeling results

Activation function – artificial neural networks [1, 8, 14]

• sigmoid                         • tangensioidal	

  )exp(1
1)(

u
ug


  

          )2exp(1
)2exp(1)(
u
uug




  
      

(6.5)

Input weights are optimized in the network learning 
process.

Updating the value of the weights:

 ,.1 iii xfww    

where: f(x,.) – multivalent differentiable function

η – correction factor signifying the length of the suc-
cessive measuring points η → 0. In that case (i.e., if  

η → 0) the representation assumes the form 



 

iy  , oth-

erwise the weight correction is repeated and then the 

representation 



 

iy   proceeds.

Weighted neural sum 

 niiyY 1  

Output of radial networks
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

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      (6.6) 

wj
i – weights of connections between the jth output and 

the ith input.

Over – parametrized networks may be able to in-
terpolate any training data. The qualitative behavior of 
adaptive optimization algorithms is illustrated by for-
mula (6.7):
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(6.7) 

Determining the response vector

The Method of Maximum Likelihood Estimation

f (Y|θ) – Plausibility function.


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					      (6.8)=   2mod. .,elMeasur YY                                
The estimator has stochastic character.   
  
Optimization Model

We have:    
  


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
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
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;    RYUf : ;  

   
  









m

j

n

i
i

j
i xw

1 1
:= 




n

i
i

j
i xwU

1
;    RYUf : ;                                         (6.9)

As follows from the distribution of product functions 
when certain boundary properties are reached, we get: 

YyUu  ;     yufyuf ,sup,    




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Consequently, we have:
                 yufyuf

UuYyYyUu
,supinf,infsup


       yufyuf

YyUuYyUu
,supmin,infmax


   

                  yufyuf
UuYyYyUu

,supinf,infsup


       yufyuf
YyUuYyUu

,supmin,infmax


           (6.10)

On the assumption that (u*, y*) ∈ U × Y – we obtain 
the optimal solution: 

                =    ** ,,supmin yufyuf
UuYy




                (6.11)

Relative extremum: We have: X . W . Y T – as the base 
space.

Let us assume that for a fixed ε we have an optimal 
solution (xε, yε), moreover

Xx  ,  Yy :           yxfyxfyxf ,,,   

 	  Xx  ,  Yy :           yxfyxfyxf ,,,         (6.12)

⇒ quasi – solution, where function f(x, y) concludes the 
above model as a  corresponding singleton.

Education of Network 
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where: g (x) – the function of activation of neural net-
works

The Weights of Neural Network – Optimization

Modification weights – - w n
i

j
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where: η > 0 – education factor
            y(x)= Δw *g(x)
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Iterative Learning

We draw the weights of the network and set the input 
values ​​“x”.

Mathematical Model Algorithm :
–	 the reproduction procedure,
–	 crossing procedure.
–	 mutation procedure.

The initial representation is a chromosome with ran-
domly assigned weights. Network learning applies the 
method of error backpropagation. Reproduction is the 
means generating successive representations – chro-
mosomes. The iteration of weights can be presented as 
follows:
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If εk ≤ εacceptable then
     For j:=1 step 1 to N   (t = 0)
     For i:=1 step 1 to M
     BEGIN
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  then it means the end of education

Covariance as a measure of dependence of random 
variables is not always correctly evaluated in terms of 
dependence (independence). Moreover, the covariance 
characterizes the pairs of random variables. As a rule, 
in the article we consider random vectors – hence the 
reference to a measure based on a supermodular func-
tion ϕ (Y Model, (Y Measur)).

If (Y Model, (Y Measur) random vectors are the measure 
of the maximum approximation of the process, then we 
get: E(ϕ (Y Mode) ≥ E(ϕ (Y Measur) 

The neuron activation function determines the out-
put value of the “Y ← y” model.

 Propagation ε  → −readingproof  of the reverse error 
concerns weight identification.

Algorithm of the Process Analysis (see: tab. 2) 

–	 Each state of the process is projected into the proce-
dure action,

–	 State transitions constitute correlations between the 
actions of the prefix operator,

–	 The distinction between states is realized by applica-
tion of the selection operator,

–	 The initial state is an instance of the process in the 
specification clause,

–	 The final state is a “Finish” process with no further 
action defined.

Then go to Weights  
Iteration 

Table 2. Correlation: Measurement ⇔ Model 
Tabela 2. Korelacje: Pomiar ⇔ Model     

Variables

Correlation (Measurement ⇔ Model)
Significance level α ≤ 0,05000

Observations: N=23

Y Imeasur Ŷ Imodel Y IImeasur Ŷ IImodel Y IIImeasur Ŷ IIImodel

Y Imeasur 1.0 0,993834
Ŷ Imodel 0,993834 1,0
Y IImeasur 1,0 0,990443
Ŷ IImodel 0,990443 1,0
Y IIImeasur 1,0 0,993616
Ŷ IIImodel 0,993616 1,0
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Generation Y(t,...)Measurement  Vectors {Ŷ(t,...)Model := ξ(t)}}
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State procedure makes it possible to describe the 
probability of being found at time t in state xi and the 
probability of transition from state xi to state xj P(xi, xj), 
which can be written down as: 
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,                   (6.13) 

The first sum in the above equation represents all 
transitions entering the state (input source – source), 

while the second sum represents all transitions that 
come out of that state (input sink – outflow). The model 
is trained by rules and patterns and creates a self-associ-
ator. The given dependencies in the information system 
describe the cause and effect relationships between the 
sets of attributes.

The correlations between the sets are important here. 
However, the distributions of the density functions do 
not belong to the normal distribution. 

The test of independence of sets of observations  
of depressions and horizontal displacement is shown 
in tab. 3.

Generation   Y(t,...)Measurement   Vectors {Ŷ(t,...) Model :=  t }

Measurement  <->  Model 
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Fig. 8. Distribution of vertical displacements in time along the measurement line ⊂ 2D
Rys. 8. Rozkład przemieszczeń pionowych w funkcji czasu wzdłuż linii pomiarowej ⊂ 2D
Pomiar: Y(t,…); Model: Y^(t,…)

Fig. 9. Subsiding trough ⊂ R3 
Visualization in 3D, data: measurement, model → applicator Matlab – Mapping-Toolbox: Kriging.
Rys. 9. Niecka obniżeń ⊂ R3  (Wizualizacja w 3D, aplikacja: Matlab)
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Estymatory statystyczne : (Tab. 2 i 3) potwierdzają 
zgodność odwzorowań: Pomiar ⇔ Model

The Statistic Estimators – as presented in (Tab. 2 
and 3) – acknowledge the representation conformity: 
Measurement ⇔ Model 

Comparing the results of numerical simulations with 
the results of experimental measurements constitutes 
a basic step in the process of fine-tuning mathematical 
models. Factor MAC (Modal Assurance Criterion) de-
termines the degree of correlation between two vectors:

                     XXYY

YX
MAC TT

T

YX 




2

,                (6.14)

where: X, Y – vectors to be compared.

The given dependencies in the information system 
describe the cause and effect relationships between the 
sets of attributes.

A set of non-trivial methods (algorithms, technolog-
ical solutions, artificial intelligence tools, etc.) as well 
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Fig.10. Visualization of the results of the MEASUREMENT WMeasurement (Xt,…) 
^ MODELLING Ŵ Model (X,.) 
Rys. 10. Wizualizacja wyników pomiaru i modelowania trajektorii (Wt, – pomiar, Wt – model)
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Fig. 11. Visualization of the Subsidence Increment W Measurement (, t)∧WModel(, t)
Rys. 11. Wizualizacja przyrostu obniżeń W Measurement (, t)∧WModel(, t)
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as the detection of features related to pathology (CAD 
– Computer-Aided Detection) determine the quality of 
representation [1], [14]. The ontology systems used for 
semantic description and, above all, interpretation of 
changes in objects in an image were used here. The 
ontology is here a means of standardizing the descrip-
tion and reducing variability in the interpretation of an 
image with the corresponding mathematical descriptors 
and processing methods. The essence of the method is 
to estimate the point displacement gradient in the ana-
lyzed period of time. The determined total density of the 
distribution of the process probability is understood as 
the value of displacements at a point x and as a function 
of time t. The final result of such processing is a seman-
tic response to the user.

Observation

The thick tails of the distribution of actual fluctua-
tions in the occurrence of threats in a certain subspace 
of the environment (non extensive fluctuations) suggest 
that a conventional approach may not be appropriate 
for describing and modeling such phenomena. The 
combination of modeling tools directly with measur-
ing devices and intelligent support to control real-time 
numerical simulation of processes are utilitarian very 
important.

Now that we have learned to fly through the air like 
birds, to swim underwater like fish, we only need one 

thing: learn to live on earth like humans  
(G. B. Shaw)
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Fig. 12. Randomly disturbed subspace of the dislocation field Y(X ; t = tk)
Rys. 12. Podprzestrzeń pola przemieszczeń o losowym rozkładzie Y(X ; t = tk)

Table 3. The Statistic Estimators of Distribution : YMEASUREMENT ⇔ YMODEL (Standard deviation) 
Tabela 3. Statystyczne estymatory rozkładów : YPOMIAR ⇔  YMODEL 
Średnia (MEAN), Statystyka T (P) (STAT: T, P); Odchylenie Standardowe  

VARIABLE
MEAN

CLASTER 
1

MEAN
CLASTER 

2 
STAT T STATP

STAND.-
DEVIAT.

CLASTER 
1

STAND.-
DEVIAT.

CLASTER 
2

QUATIENT
VAR

STAT P
VAR

Y I
MEAS . : Ŷ I

MODEL –0,3698 –0,3692 0,000 1,000 0,065851 0,065851 1,000000 1,0000

Y I
MEAS . : Ŷ II

MODEL –0,3698 –0,6473 26,36 0,000 0,065851 0,043137 2,330385 0,0028

Y I
MEAS . : Ŷ III

MODEL –0,3698 –0,4686 10,65 0,000 0,065851 0,022162 8,829180 0,0000
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CONCLUSION 

Analytical considerations, monitoring of post-min-
ing processes and numerical experiments presented in 
the article lead to the following conclusions:

1. The considered processes are modeled here 
through deterministic representations and as stochas-
tic processes, with particular reference to statistical ap-
proach. The probability of a critical event occurrence is 
estimated based on the monitoring results.

2. An attempt was made to detect the structure-time 
patterns in the period of activity of the analyzed process-
es, applying such structures as: irregularities, statistical 
scattering of measurement data and the chaotic course 
of the analyzed process. The nature of the recorded data 
was assessed by means of statistical procedures.

3. The use of various types of algorithms describing 
spatial filtration – aimed at improving the quality of the 
process of detection with the use of computational in-
telligence made it possible to optimize the accuracy of 
the process representation.

4. Comparing the modeling results with the mea-
surement results is an important step in process analy-
sis. The main difficulty of the procedure is related to the 
fact that the mathematical model is usually marked by 
a large number of degrees of freedom, while the num-
ber of sensors for real measurements is limited and the 
measurement is affected by errors. Therefore, the strict 
equality of σ-bodies cannot be ensured in all cases. The 
application criterion of uniqueness means the condition: 
that the considered classes of events should differ from 
each other at least with the accuracy close to the mea-
sure of sets 0.

5. A measurement system composed of appropriate 
hardware sets is a tool for recording and transmitting 
data on the condition of the center in the form of sets 
of measurements carried out in the observed area. That 
is, in a sense, an algorithm for generating information 
about the condition of the monitored object – such as, 
for example, a mining area.

6. The significance test α = 0.05 did not reject the 
hypothesis about the compatibility of distributions: 
W Measurement (xi,.) ~ W Model (xi,.). This means that in the 
light of the test, the presented results of the modeling of 

the process W Model (xi,.) are uniformly close in relation to 
the process W Measurement (xi,.). Those processes are marked 
by as little fluctuation as possible.

  7. Detailed knowledge of the process and its envi-
ronment, cause-effect relationships and conditions reg-
ulating given events cannot be precisely specified.
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