PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Physical, Chemical and Mechanical Properties of Sri Lankan Coir Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was carried out to determine the characterization of brown coir fiber which is used as a potential reinforcement in polymer composites. The fiber is extracted from the husk of the coconut seeds which are collected in Sri Lanka. Anyhow the above-mentioned characterization can hardly be seen when it comes to the Sri Lankan context. Since the evaluation of their physical, mechanical, and chemical properties are significant before commencing the material development process and applications for this fiber. Several testing were carried out to evaluate the above-mentioned properties. There, the functional groups of coir fiber were obtained by Fourier Transform Infrared analysis and Crystallinity Index and Crystallite size were determined by X-ray diffraction analysis. The surface morphology and cross-sectional features were investigated through Scanning Electron Microscopy. The thermo-gravimetric method was adopted to study the thermal stability of coir fiber. The density and diameter of coir fiber were measured utilizing pychometric method and optical microscope respectively. Tensile strength was measured using an electronic tensometer and then find out the tensile strength, modulus of elasticity, and elongation at breaking point. The average density of brown coir fibers was 1.018 g/cm3 and average diameters were 0.30 mm. The Crystallinity Index and the crystal-line size were 37.28% and 0.4331 nm respectively. Ultimate tensile strength, Young’s modulus, and Elongation of the coir fiber were ranging from 94–159 MPa, 1.2–1.8 GPa, and 21–67%, respectively.
Rocznik
Strony
55--65
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, University of Moratuwa, Sri Lanka
  • Department of Civil Engineering, University of Moratuwa, Sri Lanka
  • Department of Engineering Technology, Faculty of Technology, Sri Jayawardenapura, Sri Lanka
  • Department of Biosystems Technology, Faculty of Technology, Sri Jayawardenapura, Sri Lanka
  • Department of Civil Engineering, University of Moratuwa, Sri Lanka
Bibliografia
  • 1. Al-Khanbashi, A., Al-Kaabi, K., & Hammami, A. (2005). Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polymer Composites, 26(4), 486–497. https://doi.org/10.1002/pc.20118
  • 2. Baskaran, P.G., Kathiresan, M., Senthamaraikannan, P., & Saravanakumar, S.S. (2018). Characterization of New Natural Cellulosic Fiber from the Bark of Dichrostachys Cinerea. Journal of Natural Fibers, 15(1), 62–68. https://doi.org/10.1080/15440478.2017.1304314
  • 3. Bezazi, A., Belaadi, A., Bourchak, M., Scarpa, F., & Boba, K. (2014). Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Composites Part B: Engineering, 66, 194–203. https://doi.org/10.1016/j.compositesb.2014.05.014
  • 4. Binoj, J.S., Edwin Raj, R., Sreenivasan, V.S., & Rexin Thusnavis, G. (2016). Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering, 13(1), 156–165. https://doi.org/10.1016/S1672–6529(14)60170–0
  • 5. Chin, S.C., Tee, K.F., Tong, F.S., Ong, H.R., & Gimbun, J. (2020). Thermal and mechanical properties of bamboo fiber reinforced composites. Materials Today Communications, 23, 100876. https://doi.org/10.1016/j.mtcomm.2019.100876
  • 6. da Silva Moura, A., Demori, R., Leão, R.M., Crescente Frankenberg, C.L., & Campomanes Santana, R.M. (2019). The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Materials Today Communications, 18, 191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006
  • 7. Das, S. (2012). Fabrication and characterization of raw and bleached treatment coir fiber Reinforced polymer composite [MSc]. http://ethesis.nitrkl.ac.in/3526/
  • 8. dos Santos, J.C., de Oliveira, L.Á., Vieira, L.M.G., Mano, V., Freire, R.T., & Panzera, T.H. (2019). Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Construction and Building Materials, 211, 427–436.
  • 9. Ho, M., Wang, H., Lee, J.-H., Ho, C., Lau, K., Leng, J., & Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8), 3549–3562. https://doi.org/10.1016/j.compositesb.2011.10.001
  • 10. Hussain, S.A. (2011). Mechanical properties of green coconut fiber reinforced hdpe polymer composite. International Journal of Engineering Science and Technology, 3(11), 12.
  • 11. Hwang, C.-L., Tran, V.-A., Hong, J.-W., & Hsieh, Y.-C. (2016). Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites. Construction and Building Materials, 127, 984–992. https://doi.org/10.1016/j.conbuildmat.2016.09.118
  • 12. Hyness, N.R.J., Vignesh, N.J., Senthamaraikannan, P., Saravanakumar, S.S., & Sanjay, M.R. (2018). Characterization of New Natural Cellulosic Fiber from Heteropogon Contortus Plant. Journal of Natural Fibers, 15(1), 146–153. https://doi.org/10.1080/15440478.2017.1321516
  • 13. Indran, S., & Raj, R.E. (2015). Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers, 117, 392–399. https://doi.org/10.1016/j.carbpol.2014.09.072
  • 14. Liu, Y., Lv, X., Bao, J., Xie, J., Tang, X., Che, J., Ma, Y., & Tong, J. (2019). Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydrate Polymers, 218, 179–187. https://doi.org/10.1016/j.carbpol.2019.04.088
  • 15. Lomelí-Ramírez, M.G., Anda, R.R., Satyanarayana, K.G., Muniz, G.I.B. de, & Iwakiri, S. (2018). Comparative Study of the Characteristics of Green and Brown Coconut Fibers for the Development of Green Composites. BioResources, 13(1), 1637–1660.
  • 16. Manimaran, P., Senthamaraikannan, P., Murugananthan, K., Sanjay, M.R. (2018). Physicochemical properties of new cellulosic fibers from azadirachta indica plant. Journal of Natural Fibers, 15(1), 29–38. https://doi.org/10.1080/15440478.2017.1302388
  • 17. Marimuthu, K.P., Kumar, S.M., Kumar, V.R., & Govindaraju, H.K. (2019). Characterization of Mechanical Properties of Epoxy Reinforced with Glass Fiber and Coconut Fiber. Materials Today: Proceedings, 16, 661–667. https://doi.org/10.1016/j.matpr.2019.05.143
  • 18. Mathura, N., & Cree, D. (2016). Characterization and mechanical property of Trinidad coir fibers. Journal of Applied Polymer Science, 133(29). https://doi.org/10.1002/app.43692
  • 19. Mayandi, K., Rajini, N., Pitchipoo, P., Jappes, J.T. W., & Rajulu, A. V. (2016). Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. International Journal of Polymer Analysis and Characterization, 21(2), 175–183. https://doi.org/10.1080/1023666X.2016.1132064
  • 20. Moshi, A.A.M., Ravindran, D., Bharathi, S.R.S., Indran, S., Saravanakumar, S.S., & Liu, Y. (2020). Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules, 142, 212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094
  • 21. Sanjay M.R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C.I., & Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 207, 108–121. https://doi.org/10.1016/j.carbpol.2018.11.083
  • 22. Niresh J., Archana N., Karthink T., Tan Wei Hong (2019). Physical, Chemical, Morphological and Thermal Characterization of Natural Fibers. Teksti̇l ve Konfeksi̇y. https://doi.org/10.32710/tekstilvekonfeksiyon.375784
  • 23. Putra, A.E.E., Renreng, I., Arsyad, H., & Bakri, B. (2020). Investigating the effects of liquid-plasma treatment on tensile strength of coir fibers and interfacial fiber-matrix adhesion of composites. Composites Part B: Engineering, 183, 107722. https://doi.org/10.1016/j.compositesb.2019.107722
  • 24. Rao, K.M.M., & Rao, K.M. (2007). Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structures, 77(3), 288–295. https://doi.org/10.1016/j.compstruct.2005.07.023
  • 25. Ravindran, D., Manikandan, V., & Narayanasamy, R. (2011). Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Materials & Design, 32(1), 453–461. https://doi.org/10.1016/j.matdes.2010.06.004
  • 26. Rejeesh, C.R., & Saju, K.K. (2017). Methods and materials for reducing flammability behaviour of coir fibre based Composite Boards: A Review. Materials Today: Proceedings, 4(9), 9399–9407. https://doi.org/10.1016/j.matpr.2017.06.193
  • 27. Rohit, K., & Dixit, S. (2016). A Review–Future Aspect of Natural Fiber Reinforced Composite. Polymers from Renewable Resources, 7(2), 43–59. https://doi.org/10.1177/204124791600700202
  • 28. Roy, R., Sarkar, B.K., & Bose, N.R. (2001). Behaviour of E-glass fibre reinforced vinylester resin composites under impact fatigue. Bulletin of Materials Science, 24(2), 137–142. https://doi.org/10.1007/BF02710090
  • 29. Sarikanat, M., Seki, Y., Sever, K., & Durmuşkahya, C. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering, 57, 180–186. https://doi.org/10.1016/j.compositesb.2013.09.041
  • 30. Scalici, T., Fiore, V., & Valenza, A. (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering, 94, 167–175. https://doi.org/10.1016/j.compositesb.2016.03.053
  • 31. Seki, Y., Sarikanat, M., Sever, K., & Durmuşkahya, C. (2013). Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering, 44(1), 517–523. https://doi.org/10.1016/j.compositesb.2012.03.013
  • 32. Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1632–1637. https://doi.org/10.1016/j.compositesa.2008.07.007
  • 33. Syed, H., Nerella, R., & Madduru, S. R. C. (2020). Role of coconut coir fiber in concrete. Materials Today: Proceedings, S2214785320305824. https://doi.org/10.1016/j.matpr.2020.01.477
  • 34. Theivasanthi, T., Anne Christma, F.L., Toyin, A. J., Gopinath, S.C.B., & Ravichandran, R. (2018). Synthesis and characterization of cotton fiberbased nanocellulose. International Journal of Biological Macromolecules, 109, 832–836. https://doi.org/10.1016/j.ijbiomac.2017.11.054
  • 35. Tong, Q., & Qiu, F. (2020). Population growth and land development: Investigating the bi-directional interactions. Ecological Economics, 169, 106505. https://doi.org/10.1016/j.ecolecon.2019.106505
  • 36. Verma, D., & Gope, P.C. (2015). The use of coir/ coconut fibers as reinforcements in composites. In Biofiber Reinforcements in Composite Materials (pp. 285–319). Elsevier. https://doi.org/10.1533/9781782421276.3.285
  • 37. Widnyana, A., Rian, I.G., Surata, I.W., & Nindhia, T.G.T. (2020). Tensile Properties of coconut Coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer. Materials Today: Proceedings, 22, 300–305. https://doi.org/10.1016/j.matpr.2019.08.155
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bb08447-c011-4483-9e3c-ba4bc15ef6ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.