PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on microstructure evolution of TA1 titanium alloy subjected to electromagnetic impact loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the adiabatic shear band of TA1 titanium alloy subjected to electromagnetic impact loading was investigated. The formation of adiabatic shear band and microstructure evolution within it were revealed by microstructure characterizations. Deformation results showed an adiabatic shear band with the width of 10 mm located in shear deformation zone, and most deformations mainly concentrated in the narrow band. The compressive insta-bility and the hardness difference contributed to the formation of adiabatic shear band. Severe shear deformations led to high location density within the adiabatic shear band. A large amount of dislocations distributed in the form of dislocation cells and random dislocations. The rotational dynamic recrystallization mechanism caused that many dy-namic recrystallization grains with the size of 100–200 nm were found inside the adiabatic shear band. Adiabatic temperature rise and distortion energies stored by high dislocation densities provided sub-grain rotations with the driving forces.
Rocznik
Strony
639--647
Opis fizyczny
Bibliogr. 16 poz., fot., rys., wykr.
Twórcy
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410004, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410004, China
autor
Bibliografia
  • [1] R.S. Sikarwar, R. Velmurugan, N.K. Gupta, Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading, Compos. B Eng. 60 (1) (2014) 627–636.
  • [2] H. Iyama, Y. Higa, M. Nishi, S. Itoh, Numerical simulation of explosive forming using detonating fuse, Int. J. Multiphys. 11 (3) (2017) 233–244.
  • [3] X. Zhang, H.P. Yu, H. Su, C.F. Li, Experimental evaluation on mechanical properties of a riveted structure with electromagnetic riveting, Int. J. Adv. Manuf. Technol. 83 (9– 12) (2016) 2071–2082.
  • [4] J.S. Montgomery, M.G.H. Wells, B. Roopchand, J.W. Ogilvy, Low-cost titanium armors for combat vehicles, JOM 49 (5) (1997) 45–47.
  • [5] Y. Yang, B.F. Wang, Microstructure evolution in adiabatic shear band in a-titanium, J. Mater. Sci. 41 (22) (2006) 7387– 7392.
  • [6] J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, et al., Microstructure of adiabatic shear bands in Ti6Al4V, Mater. Charact. 75 (2) (2013) 79–92.
  • [7] I. Polyzois, N. Bassim, An examination of the formation of adiabatic shear bands in AISI 4340 steel through analysis of Grains and grain deformation, Mater. Sci. Eng. A 631 (10) (2015) 18–26.
  • [8] Y. Bai, B. Dodd, Adiabatic Shear Localization, Pergamon Press, Oxford, 1992.
  • [9] A.J. Sunwoo, R. Becker, D.M. Goto, T.J. Orzechowski, H.K. Springer, C.K. Syn, et al., Adiabatic shear band formation in explosively driven Fe–Ni–Co alloy cylinders, Scr. Mater. 55 (3) (2006) 247–250.
  • [10] Y.G. Kim, B. Hwang, S. Lee, C.W. Lee, D.H. Shin, Dynamic deformation and fracture behavior of ultra-fine-grained pure copper fabricated by equal channel angular pressing, Int. J. Mod. Phys. B 36 (11) (2005) 2947–2955.
  • [11] M.A. Meyers, H.R. Pak, Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy, Acta Mater. 34 (12) (1986) 2493–2499.
  • [12] J.H. Deng, C. Tang, M.W. Fu, Y.R. Zhan, Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting, Mater. Sci. Eng. A 591 (2) (2014) 26– 32.
  • [13] V.F. Nesterenko, M.A. Meyers, J.C. Lasalvia, Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum, Mater. Sci. Eng. A 229 (1–2) (1997) 23–41.
  • [14] M.A. Meyers, Y.B. Xu, Q. Xue, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Mater. 51 (5) (2003) 1307–1325.
  • [15] X. Zhang, M.Y. Zhang, L.Q. Sun, C.F. Li, Numerical simulation and experimental investigations on TA1 titanium alloy rivet in electromagnetic riveting, Arch. Civil Mech. Eng. 18 (3) (2018) 887–901.
  • [16] Y. Yang, B.F. Wang, Dynamic recrystallization in adiabatic shear band in a-titanium, Mater. Lett. 60 (2006) 2198–2202.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bafcf1b-8785-4333-b667-eb9a75447428
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.