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Abstract

The complexity and dynamics in groupage traffic require flexible, efficient, and adaptive
planning and control processes. The general problem of allocating orders to vehicles can
be mapped into the Vehicle Routing Problem (VRP). However, in practical applications
additional requirements complicate the dispatching processes and require a proactive and
reactive system behavior. To enable automated dispatching processes, this article presents
a multiagent system where the decision making is shifted to autonomous, interacting, in-
telligent agents. Beside the communication protocols and the agent architecture, the focus
is on the individual decision making of the agents which meets the specific requirements
in groupage traffic. To evaluate the approach we apply multiagent-based simulation and
model several scenarios of real world infrastructures with orders provided by our indus-
trial partner. Moreover, a case study is conducted which covers the autonomous groupage
traffic in the current processes of our industrial parter. The results reveal that agent-based
dispatching meets the sophisticated requirements of groupage traffic. Furthermore, the
decision making supports the combination of pickup and delivery tours efficiently while
satisfying logistic request priorities, time windows, and capacity constraints.

1 Introduction

The complexity and dynamics in logistic pro-
cesses have been increased due to shorter product
life cycles, the rising number of product variants,
and the growing number of transnational links and
dependencies of the production processes between
companies. As a result, the requirements of trans-
port processes are increasingly complex through
shorter transit times, the individual qualities of ship-
ments, and higher amounts of small-sized orders. In
addition, the rising traffic density on transport in-
frastructures and growing demands wrt. sustainable
transportation encourage logistic companies to im-
prove the efficiency of their processes. 1

In the last decades, numerous efficient heuris-

tics and meta-heuristics have been developed for the
transportation domain like ant systems, tabu-search,
simulated annealing and genetic algorithms, just to
name a few, e.g., [1, 2, 3, 4, 5, 6]. However, cen-
tral planning and control in dynamic and complex
logistic processes is limited due to the requirements
of flexibility and adaptability to changing environ-
mental influences.

In autonomous logistic processes, the decision
making is shifted from central, hierarchical plan-
ning and control systems to decentralized, heter-
archical systems [7]. Intelligent software agents
represent logistic entities, e.g., containers or vehi-
cles. Thus, they are able to plan and schedule their
way through the logistic network by themselves.
The agents act on behalf of represented objects and

1Preliminary parts of this paper were presented at the 5th International Conference on Agents and Artificial Intelligence in
Barcelona, Spain, in February 2012, and at the IEEE Symposium on Computational Intelligence in Production and Logistics Sys-
tems in Singapore, in April 2013.
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try to reach the objectives assigned by their own-
ers. Consequently, relevant information is directly
linked to products. For instance, an agent repre-
senting a shipment is aware of its individual weight,
volume, and its designated place and time of arrival.
The agents apply and share this knowledge through
communication and negotiation mechanisms with
other agents in order to optimize the efficiency of
processes and utilization of resources. By dele-
gating planning and control processes to decentral-
ized entities the overall problem is split into smaller
problem instances that can be solved optimally due
to smaller computational complexity.

We present an autonomous dispatching system
that accommodates the requirements of groupage
traffic. The paper is structured as follows: Section 2
describes the logistic problem that was extracted
in an initial process with a forwarding agency and
specifies the problem formally. In Section 3, we
present the implemented multiagent system includ-
ing the interaction protocols as well as the deci-
sion making processes of the agents. Thereby, we
contemplate at the effects of increasing the prob-
lem complexity by adding constraints that have to
be dealt with in groupage traffic. In Section 4 we
present the multiagent simulation system PlaSMA
[8].

For an evaluation study, we use PlaSMA in
combination with customer orders based on real-
world data provided by our industrial partner. The
experimental setup and the results are provided in
Section 5. Finally, we conclude the results and pro-
vide future research directions.

2 Groupage Traffic

In groupage traffic, several orders with less-
than-truckload (LTL) shipments are served by the
same truck to decrease total cost. In pickup tours,
trucks transport loads from their origin to a local
depot where the shipments are consolidated to en-
able economical loads. Through LTL networks the
load is transported to a depot in the destination
area where each good is delivered to its final des-
tination through onward carriage. The complex-
ity of process planning is even increased by chang-
ing amounts and individual qualities of shipments
like weight, volume, priority, and value. Han-
dling the complexity in real life is aggravated by

the high degree of dynamics that result from unex-
pected events. The exact amount and properties of
shipments are not known in advance. Actual ca-
pacities are only revealed and exactly determined
while serving tasks. Furthermore, undelivered loads
in pre-carriage decrease truck capacities in onward
carriage. To react to changing traffic conditions and
delays on incoming goods departments, it is essen-
tial to adapt tours and timetables with respect to ac-
tual capacities. The main processes are illustrated
in Fig. 1.

Figure 1. The main processes in groupage traffic.

The dynamics and complexity of planning and
scheduling processes require efficient, proactive,
and reactive system behavior to improve the service
quality while ensuring time and cost efficient trans-
portation. Regarding the dispatching process in pre-
and onward carriage the general problem can be
mapped to the well-known Vehicle Routing Prob-
lem (VRP)[9]. In general, the VRP is concerned
with determining minimum costs tours for a fleet
of vehicles to satisfy customer requests at different
destinations. The start and end point of each tour is
the depot.

Definition 1 (Vehicle Routing Problem) Let V
denote a set of vehicles and S a set of service re-
quests. Given the costs cv

i, j for a vehicle v ∈ V for
traveling from i ∈ S to j ∈ S and choosing indicator
variables

xv
i, j =

{
1, if (i, j) is part of the vehicle v’s tour
0, otherwise

(1)

the general objective function of VRP is

min ∑
v∈V

∑
j∈S

∑
i∈S

cv
i, j · xv

i, j (2)
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with subject to

∑
v∈V

∑
i∈S

xv
i, j = 1 for all j ∈ S (3)

∑
v∈V

∑
j∈S

xv
i, j = 1 for all i ∈ S (4)

∑
v∈V

xv
i, j = {0,1} for all i, j ∈ S (5)

∑
v∈V

∑
j∈S

∑
i∈S

xv
i, j ≤ |Y |−1 for all Y ⊆ S. (6)

Moreover, further constraints, e.g., time win-
dows, capacities, as well as time consumption at the
warehouse/customer, must be taken into account. If
ls denotes the latest delivery time, ts the time con-
sumption of the boarding or deboarding process, rs

the release time at s ∈ S and timev
i, j vehicle v’s time

for driving from i to j, then

xv
i, j = 1 ⇒ l j ≥ ri + ti + timei, j (7)

has to be satisfied. In addition, we have to ensure
that the maximum capacity of a vehicle is not ex-
ceeded at any time. Let CCv

s denote the current ca-
pacity of vehicle v at stop s ∈ S and MCv the maxi-
mum capacity of vehicle v, then we require

CCv
s ≤ MCv for all s ∈ S,v ∈V. (8)

In VRPs containing exclusively pickup or deliv-
ery orders the current capacity is decreasing or in-
creasing monotonously. The combination of pickup
and delivery tours leads to an increasing complex-
ity due to fluctuating capacities. Consequently, the
sequence of a tour has a significant impact on a
truck’s load. Moreover, the complexity is aggra-
vated by the high degree of dynamics that result also
from unexpected events, such as an exact amount
and properties of incoming orders are not known in
advance. Actual capacities are only known while
serving tasks. To react to these changing conditions
and incoming orders, it is essential to adapt tours
and timetables in respect to actual capacities in al-
most real-time.

In general, it is not possible to transport all or-
ders that are available on a certain day. However,
the quality of service is an important factor to sat-
isfy the economic objectives. The transportation
of so-called premium services must be guaranteed
with respect to their time windows while consider-
ing other hard constraints, e.g., the capacity of ve-
hicles. Premium services have to be delivered on

the date of receipt until 8am, 10am, 12am, or not
later than 5pm. Within a logistic transport network
the participating forwarding agencies have to pay
high amounts of penalties if they do not adhere the
agreed upon commitments.

Definition 2 (Premium Stop) Pickup or delivery
stops on which premium services have to be picked
up or delivered are defined by the boolean function

pi =

{
true, if i is a premium stop
false, otherwise.

(9)

On the other hand, conventional orders can be
delivered up to two days after their arrival with-
out effects to guaranteed service times. There is no
need to order an external freight carrier for them.
Moreover, shipments which have to be delivered
until 5 pm can be processed by own vehicles, e.g.,
by shifting the transport of another conventional or-
der to the next day. As a result, the objective func-
tion of the VRP includes not only to find a solution
with minimum costs, but tours that maximize the
number of premium services with highest priority:

max∑
i∈S

∑
j∈S

pi · xi, j (10)

and conventional orders with second highest prior-
ity:

max∑
i∈S

∑
j∈S

¬pi · xi, j. (11)

To illustrate the range of the search space, one
can model the problem by an urn model including
sampling with replacement and consideration of the
sequence. For instance, for each shipment s ∈ S ex-
actly one v∈V is selected from the urn. Afterwards,
it is put back and the procedure continues with the
next shipment. As a result, there are |S||V | possible
allocations of shipments to vehicles, if |V | denotes
the number of vehicles and |S| the number of ship-
ments (stops).

The complexity is even increased by the high
degree of dynamics. Tours and routes have to be
adapted throughout the entire operation, to include
new orders in existing plans and to deal with un-
expected events. Consequently, the dispatcher re-
quires solid decision support systems that are ca-
pable to cover the high requirements of groupage
traffic.
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3 A Mulitagent System for Plan-
ning and Control in Groupage
Traffic

The advantages of applying multiagent systems
are high flexibility, adaptability, scalability, and ro-
bustness of decentralized systems through problem
decomposition and proactive, reactive, and adaptive
behavior of intelligent agents [9]. Therefore, mulit
agent systems are especially applied to open, un-
predictable, dynamic, and complex environments.
There are many examples of multiagent systems
within logistic processes for resource allocation,
scheduling, optimization, and controlling. Agent-
based commercial systems are used within the plan-
ning and control processes of containerized fright
[10, 11]. Team formation and interaction proto-
cols have been designed for efficient resource al-
location [12] as well as for concurrent negotiations
between logistic service providers and service con-
sumers [13]. Agent-based systems have optimized
planning and control processes within dynamic en-
vironments [14, 15]. Other application ranges have
been provided for industrial logistic processes [16].
A comprehensive survey in research on autonomous
logistic processes is provided in [17] and [12].

3.1 Agent Interaction and Execution

Similar to Schuldt [12], who developed an
agent-based system for the optimization of ware-
house capacities in containerized freight, agents
represent transport vehicles and orders. While the
general architecture of each vehicle agent is identi-
cal, the agents differ in their individual properties.
For instance, represented vehicles vary in their ca-
pacities, work schedules, and speed limits. Like-
wise, each order agent considers the unique char-
acteristics of its represented shipment such as the
pickup and delivery location, weight, value, time
windows, and premium service constraints. The
goal of order agents is to find a proper transport
service provider for carrying the shipment from the
depot to the destination or from its origin to the de-
pot while satisfying given time window constraints.
vehicle agents negotiate with order agents to max-
imize the number of carried shipments while satis-
fying all relevant constraints and premium service
priorities.

Firstly, each order agent sends a cluster re-
quest to a cluster-agent which collects all requests
until the operational processes of the trucks start
in the morning. Then, the cluster-agent starts the
rough planning by applying a K-Means clustering
[18]. The goal is to assign each shipment to one
of k available vehicles. An initial allocation is
computed by an office-specific mapping of postal
codes to trucks that is provided by the forwarding
agency. Next, the cluster algorithm considers the
coordinates of the pickup or delivery location of
the shipment. Therefore, the algorithm consolidates
shipments that have pickup or delivery locations in
nearby districts in the same cluster. Further con-
straints are neglected, but considered in the detailed
planning processes. A limitation of conventional in-
formation systems, which support the dispatchers
of forwarding agencies, is that the rough planning
is currently merely based on a static office-specific
mapping and does not consider the effective order
situation. Contrary, the agent-based clustering solu-
tion covers seasonal fluctuations and the daily vary-
ing order volume. Furthermore, it computes a uni-
form distribution of orders to trucks with respect to
the location of the orders.

figures/cluster_protocol.png

Figure 2. The interaction protocol for rough
planning that is applied by the cluster-agent.

The implemented interaction protocol is shown
in Figure 2. If n denotes the number of shipments,
the communication effort of the protocol is O(n2).
It is a stable interaction protocol that prevents ma-
nipulation of the outcome by a participant. More-
over, it ensures that confidential data of any ship-
ment is only sent to agents with appropriate access
rights, e. g., truck agents receive only information
about assigned shipments.

To reduce the computational effort after the
initial allocations are computed, shipments at the
same pickup or delivery location constitute an or-
der. The orders’ properties are defined by the ship-

Clustering-Protocol

:Participant :ClusterManager:ClusterAgent

request-cluster

inform-cluster-changeskinform-cluster-changes n

n
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ments and an order contains either pickup or deliv-
ery requests. Afterwards, each vehicle agent starts a
detailed planning process. On the one hand, the ve-
hicle agent considers the truck’s capacity, the driv-
ing times which are depended on the type of the
street and the respective speed limits, as well as the
individual capacities of the shipments such as the
weight, priority, time windows, handling times, and
obviously the pickup or delivery location. On the
other hand, the agent optimizes the objective func-
tions to reduce costs and determine efficient solu-
tions. Therefore, with highest priority it maximizes
the amount of transported premium services. With
second highest priority it maximizes the processing
amount of conventional orders and with third high-
est priority it identifies the shortest path for visiting
all stops. As a result, the problem refers to a gener-
alization of the NP-Hard Traveling Salesman Prob-
lem (TSP) [19] which is a single vehicle variant of
the VRP [20]. The solver which meets the special
requirements in groupage traffic is described in Sec-
tion 3.2.

After the detailed planning step of each vehi-
cle agent, several orders may not be serviced by
a vehicle. As the decision making process of ve-
hicle agents prioritize premium services, this af-
fects conventional orders more frequently. Never-
theless, conventional orders may be transported by
another truck. Thus, the responsible agent acts in
the same way like agents representing dynamically
incoming orders: They start a contract-net proto-
col [21] negotiation with the truck agents. The
agent sends a call for proposal message to available
trucks. Next, the vehicle agents compute proposals
by determining their additional cost for transport-
ing the shipment. In order to schedule new orders
also while transporting other shipments, the vehi-
cle agent has to consider all relevant changes in the
environment as well as its internal state, e.g., the
position of the truck and current capacity restric-
tions. For instance, picked-up shipments reduce
available capacities and the position of the vehicle
affects the determination of shortest ways and op-
timal routes. Consequently, the planning and deci-
sion making processes of the agents are linked di-
rectly to their execution behaviors. Computed cost
are sent back to the order agent that chooses the
transport provider with the least cost. If it is not pos-
sible to satisfy the orders’ requirements, a refuse-
message is sent by the vehicle agent.

To transport a premium service instead of con-
ventional orders or another premium service with
less cost, already accepted orders (that have not
been boarded yet) may not be included in the new
plan and have to be rescheduled. Afterwards, af-
fected order agents negotiate with other transport
service providers again. Potentially, this results in
a series of computation and communication inten-
sive negotiations between agents to achieve small
improvements. To reduce this effect (especially
if several shipments are processed consecutively
within a short time window and the global alloca-
tion changes significantly) the agent waits for a cer-
tain period of time before it starts the negotiation
procedure. Delays and not delivered shipments may
also affect current plans of vehicle agents. There-
fore, the vehicle agent validates its plans consec-
utively and adapts the route if necessary. New
plans may effect the executing actions of the trucks.
Therefore, the truck agent checks during driving, if
the next stop has changed and if necessary it adapts
the tour. In real processes as well as in the simula-
tion the handling processes (boarding and deboard-
ing of shipments) must not be interrupted. This re-
quirement is satisfied by not adopting plans that in-
terfere with the running handling processes.

3.2 Agent Decision Making

Within the negotiation, vehicle agents have to
compute proposals and decide which service re-
quest has to be satisfied. These cost are based on the
additional distance that has to be driven by the ve-
hicle. To calculate the distance, agents must solve a
generalization of the NP-Hard Traveling Salesman
Problem (TSP) [19] that is a single vehicle variant
of the VRP defined in Section 2. More formally,
there are n different stops i with i∈ {1,2, . . . ,n} and
all distances between two stops i and j are specified
by ci, j ∈+ and ci,i = 0 for 1 ≤ i, j ≤ n. Feasible
solutions are permutations of (1,2, . . . ,n) with the
additional constraint that the first (and thus the last
stop to be visited) is the depot. Real transport in-
frastructures are commonly represented by directed
graphs. In this case the problem is an asynchronous
TSP for which we search an optimal tour. In or-
der to meet the special requirements in groupage
traffic, the problem changed into a maximizing-
minimizing problem that can be described as fol-
lows.
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Definition 3 (Optimal Tour with Premium Stops)
The optimal tour of the asymmetric TSP must be
feasible and fulfill the following requirements or-
dered by their priorities for the variables

xi, j =

{
1, if (i, j) is part of the tour
0, else

(12)

1. Maximize the number of transported premium
services: max∑n

i=1 ∑n
j=1 pi · xi, j

2. Maximize the number of visited stops:
max∑n

i=1 ∑n
j=1 xi, j

3. Minimize the total cost of the path:
min∑n

j=1 ∑n
i=1 ci, j · xi, j subject to

(a) ∑n
i=1 xi, j = 1 for all j ∈ {1, . . . ,n}

(b) ∑n
j=1 xi, j = 1 for all i ∈ {1, . . . ,n}

(c) xi, j = {0,1} for all j, i ∈ {1, . . . ,n}
(d) ∑ j∈S ∑i∈S xi, j ≤ |S|−1 for all S ≤ {1, . . . ,n}

Branch-and-bound (BnB) is an Operations Re-
search (OR) programming paradigm used to solve
hard combinatorial optimization problems. To ap-
ply Branch-and-bound (BnB), we extend depth-first
search (DFS) by upper and lower bounds.

An initial upper bound can be obtained by con-
structing any solution, e.g., established by a greedy
approach. Unfortunately, for lager TSPs the branch-
ing process consumes a lot of time to determine a
greedy solution. As with standard DFS, the first so-
lution obtained might not be optimal. With depth-
first BnB (DFBnB), however, the solution quality
improves over time together with the global upper
bound U until eventually the lower bound L(u) at
some node u is equal to U . In this case an opti-
mal solution has been found, and the search termi-
nates. It is ensured that the algorithm terminates
when a fixed number of expansions is exceeded. As
a result, we have an anytime algorithm that finds
better solutions the more time it keeps running. It
returns a valid solution if it is interrupted. If no fur-
ther improvement is possible, the optimal solution
is found.

Constraint-TSP-DFBnB(n,depot,X)
Initialize upper bound U
maxExp ← X

exp ← tour ← best ← /0
call DFS(n,depot,0,U)
return bestPath

DFS(n,u,g,U)
Input: Node u, path cost g, upper bound U
Side effects: Update of threshold U , solution path bestPath

d ← depth(u)
tourd ← u
if (cost(best)< cost(tour))

best ← tour
if (d = n−1)

if (g+ cu,depot <U)
best ← tour
U ← g+ cu,depot

else
{v0, . . . ,vn}← nextcities(u)
for each j in {1, . . . ,n}

exp++
if (Constraint(v j) ∧ maxExp ≥ exp)

if (g+h(v j)<U)
call DFS(n,v j,g+ cu,v j ,U)

DFBnB Algorithm for the Constraint TSP.

The pseudo-code implementation is shown in
Algorithm 3.2. At the beginning of the search, the
procedure is invoked with the start node and with
the upper bound U set to some reasonable estimate
(it could have been obtained using some heuristics;
the lower it is, the more can be pruned of the search
tree, but in case no upper bound is known, it is safe
to set it to a maximum value). The tour and the
number of expansions are maintained globally. An-
other global variable best keeps track of the cur-
rent best solution path. If a tour with lower cost
is found this tour is saved as the best found result.
The cost function has to consider also the priori-
ties of premium services and conventional orders.
It is obvious that an increasing depth leads to a ris-
ing number of included orders. If all orders are in-
cluded (d = n − 1), the current cost are saved as
upper bound and further pruning rules can be ap-
plied to accelerate the search. If the algorithm ter-
minates before the maximum number of expansions
is reached, the optimal solution with the maximum
number of shipments as well as the shortest path is
returned.
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feasible and fulfill the following requirements or-
dered by their priorities for the variables

xi, j =

{
1, if (i, j) is part of the tour
0, else

(12)

1. Maximize the number of transported premium
services: max∑n

i=1 ∑n
j=1 pi · xi, j

2. Maximize the number of visited stops:
max∑n

i=1 ∑n
j=1 xi, j

3. Minimize the total cost of the path:
min∑n

j=1 ∑n
i=1 ci, j · xi, j subject to

(a) ∑n
i=1 xi, j = 1 for all j ∈ {1, . . . ,n}

(b) ∑n
j=1 xi, j = 1 for all i ∈ {1, . . . ,n}

(c) xi, j = {0,1} for all j, i ∈ {1, . . . ,n}
(d) ∑ j∈S ∑i∈S xi, j ≤ |S|−1 for all S ≤ {1, . . . ,n}

Branch-and-bound (BnB) is an Operations Re-
search (OR) programming paradigm used to solve
hard combinatorial optimization problems. To ap-
ply Branch-and-bound (BnB), we extend depth-first
search (DFS) by upper and lower bounds.

An initial upper bound can be obtained by con-
structing any solution, e.g., established by a greedy
approach. Unfortunately, for lager TSPs the branch-
ing process consumes a lot of time to determine a
greedy solution. As with standard DFS, the first so-
lution obtained might not be optimal. With depth-
first BnB (DFBnB), however, the solution quality
improves over time together with the global upper
bound U until eventually the lower bound L(u) at
some node u is equal to U . In this case an opti-
mal solution has been found, and the search termi-
nates. It is ensured that the algorithm terminates
when a fixed number of expansions is exceeded. As
a result, we have an anytime algorithm that finds
better solutions the more time it keeps running. It
returns a valid solution if it is interrupted. If no fur-
ther improvement is possible, the optimal solution
is found.

Constraint-TSP-DFBnB(n,depot,X)
Initialize upper bound U
maxExp ← X

exp ← tour ← best ← /0
call DFS(n,depot,0,U)
return bestPath

DFS(n,u,g,U)
Input: Node u, path cost g, upper bound U
Side effects: Update of threshold U , solution path bestPath

d ← depth(u)
tourd ← u
if (cost(best)< cost(tour))

best ← tour
if (d = n−1)

if (g+ cu,depot <U)
best ← tour
U ← g+ cu,depot

else
{v0, . . . ,vn}← nextcities(u)
for each j in {1, . . . ,n}

exp++
if (Constraint(v j) ∧ maxExp ≥ exp)

if (g+h(v j)<U)
call DFS(n,v j,g+ cu,v j ,U)

DFBnB Algorithm for the Constraint TSP.

The pseudo-code implementation is shown in
Algorithm 3.2. At the beginning of the search, the
procedure is invoked with the start node and with
the upper bound U set to some reasonable estimate
(it could have been obtained using some heuristics;
the lower it is, the more can be pruned of the search
tree, but in case no upper bound is known, it is safe
to set it to a maximum value). The tour and the
number of expansions are maintained globally. An-
other global variable best keeps track of the cur-
rent best solution path. If a tour with lower cost
is found this tour is saved as the best found result.
The cost function has to consider also the priori-
ties of premium services and conventional orders.
It is obvious that an increasing depth leads to a ris-
ing number of included orders. If all orders are in-
cluded (d = n − 1), the current cost are saved as
upper bound and further pruning rules can be ap-
plied to accelerate the search. If the algorithm ter-
minates before the maximum number of expansions
is reached, the optimal solution with the maximum
number of shipments as well as the shortest path is
returned.

AGENT-BASED DISPATCHING ENABLES . . .

At each node the visited cities, the current time,
premium service information, and the current ca-
pacity of the tour are saved as a computer word.
All bit-vector operations (setting, clearing of bits,
check for subsumption) run in O(1) which is is the
standard assumption in the RAM model. This en-
ables constraint checks in O(1) at each node, be-
cause each check is done by bit-vector compari-
son2. For instance, the constraint check, if stop j
has already been visited is shown in Figure 3. Sim-
ilarly, the other constraints such as time windows
are checked.

(((used >> j) & 1L) > 0)

Figure 3. An example for the implementation of a
constraint check in the procedure Constraint(v j) in

Algorithm 3.2.

In pure pickup or delivery problems checking
the capacity is done by comparing the sum of all
transported shipments to the maximum capacity of
the truck. However, this holds not for the mixture of
both problems as capacities are varying. Delivered
shipments release capacities for picking up more
freight. Therefore, two more variables for the ca-
pacity of all deliveries and the maximum capacity
have to be maintained at each node.

Theorem 1 Checking the capacity constraints of
the truck with simultaneous pickup and deliveries
is done in constant time and space.

Proof Saving at each node the maximum capacity
χM that the truck has reached on the tour, the current
capacity χC of the truck, χD the sum of all delivery
shipments that have to be loaded at the depot, and
let ω denote the weight of the order at stop s, on
each node χM is updated with

χM =

{
max(χC,χM +ω), if s is a delivery stop

max(χC,χM), otherwise.
(13)

If τ denote the maximum capacity of the truck, the
capacity constraints for adding a new order are sat-
isfied by checking

τ ≥ χM. (14)

Consequently, all operations can be implemented

by a single bit-vector comparison. No backtrack-
ing is necessary to avoid an overcharge of trucks on
predecessor nodes by adding new delivery stops to
the tour. �

Table 1. An example for checking the capacity
constraints of a truck in the tree structure.

depth χC χM is pickup stop plan is valid
(Equation 14)

0 0 0 - -
1 1 1 yes true
2 2 2 yes true
3 2 3 no true
4 2 4 no true
5 2 5 no false
5 3 4 yes true
6 4 4 yes true

Table 1 gives an example which enables con-
straint checks in constant time and space. In this
example, we assume that the maximum capacity of
the truck is 4 and the weight of each shipment is
1. To avoid backtracking, we save χC and χM at
each node. If the truck picks up a shipment, the
current capacity is increasing. Adding a delivery
stop in the plan does not effect the current capacity
because loading the shipment was not considered
up to this point. Nevertheless the truck has to load
the shipment at the depot before starting the tour.
Therefore, χM is increasing. Consequently, it is not
possible to add a delivery stop in depth 5 although
other pickup stops are included afterwards.

Figure 4 illustrates the search tree of the branch
and bound algorithm and shows the bit-vector im-
plementations of the visited cities, the current time,
premium service information, and the current ca-
pacity of the tour at each node.

2If n denotes the number of stops and w the length of the hardware dependent computer word, we assume that the complexity is
of O( n

w ) = O(1).
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Figure 4. An example of the branch and bound
search tree for solving constraint TSPs with

pickups and deliveries.

Serving pickup and deliveries simultaneously
does not effect the optimality of the decision mak-
ing process, if the algorithm is not interrupted by
exceeding a maximum number of expansions.

Theorem 2 Setting the number of allowed expan-
sions to ∞ the solver is optimal for admissible lower
bounds, the above pruning rules, and the objective
functions specified in Equation 10, 11, and 2.

Proof If no pruning was taking place, every possi-
ble solution would be generated, so that the optimal
solution would eventually be found. Pruning rules
that satisfy capacity and time window constraints,
cut off infeasible branches from the search tree so
that the solution will be optimal. In addition, the
search tree is only pruned by the upper bound U,
if the maximum depth is reached and all cities are
still visited (this satisfies Equation 10 and 11). If the
tree is pruned by finding a better lower bound, as for
admissible weight functions exploring the subtree
cannot lead to better solutions than the one stored
with U. �

4 Agent-Based Simulation

Changing logistic processes often requires
hardware investments, negotiations and communi-
cation with involved persons, and implies risks for
the company, e.g., the benefit could be lower than
expected. Applying multiagent-based simulation
(MABS) to procure well-founded assessments of
the impact of potential changes is an accurate cost
and time reducing method before the deployment of
multiagent systems. This holds especially for sce-

narios with run-time agent interactions that cannot
be predicted in advance [22].

PlaSMA [8] (see: http://plasma.informatik.uni-
bremen.de/) is an agent-based event driven simu-
lation platform that has been designed for mod-
eling, simulation, evaluation, and optimization of
planning and control processes in logistics. It ex-
tends the FIPA-compliant Java Agent DEvelopment
Framework (JADE) [23] for agent communication
and coordination and provides discrete time sim-
ulation that ensures correct synchronization while
satisfying time model adequacy, causality, and re-
producibility [24].

The transport infrastructure within the simu-
lation environment is modeled as directed graph.
Nodes represent traffic junctions or logistic sources
and sinks, while edges represent different types of
ways, e.g., roads, motorways, trails, and waterways.
They have additional parameters that determine the
maximum allowed velocity and the distance of an
edge. Therefore the simulation system enables fine-
grained modeling of road sections whose maximum
allowed velocity is changing.

In order to simulate industrial and transport pro-
cesses reliably, it allows the simulation of real-
world infrastructures and supports their import from
OpenStreetMap. This enables the integration of
highly detailed graphs with up to 300,000 edges and
150,000 nodes. After clipping, a user defined map
section and choosing relevant types of edges (e.g.,
roads, waterways, highways and railways) several
preprocessing procedures are started to reduce the
complexity of the overall graph without effects on
the granularity of the infrastructure model. For ex-
ample, redundant nodes as well as nodes that are
only important to mark the course of the roads are
deleted. The result is a directed graph which in-
cludes information about the real worlds speed lim-
its, the distance as well as the type of an edge.

Particularly, shortest-path searches on real in-
frastructures are cost-intensive operations. How-
ever, computing the distance matrix between cities
is essential for solving the TSP on a shortest path
reduced graph (see Section 3.2). Consequently,
we implemented Dijkstra’s single-source shortest
paths search [25] that is realized by a memory-
efficient joint representation of graph and radix
heap nodes [26]. Therefore, the algorithm is opti-
mal and has linear time complexity as long as the
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only important to mark the course of the roads are
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frastructures are cost-intensive operations. How-
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reduced graph (see Section 3.2). Consequently,
we implemented Dijkstra’s single-source shortest
paths search [25] that is realized by a memory-
efficient joint representation of graph and radix
heap nodes [26]. Therefore, the algorithm is opti-
mal and has linear time complexity as long as the
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distances between cities are bounded by a small
constant3. Computing a distance matrix requires
a lot of shortest-path searches with a fixed start-
ing node and is a time critical procedure. Hence,
we adapted the search procedure and saved the last
visited nodes within a hash map as well as in the
radix heap structure as long as the start node has
not changed. While processing new search requests
we check in constant time, if the shortest path to
the node was already found and retrieve the cor-
responding node from the radix heap. Otherwise,
the shortest path search is continuing at the last ex-
panded node. In addition, we extended the search
algorithm with a cache. Moreover, PlaSMA is ca-
pable of linking process data of cooperating com-
panies and partners, e.g., customer orders or service
requests, directly into the simulation platform to in-
duce plausible, pertinent, and precise results that
permit conclusions and analyses of real logistic pro-
cesses with low costs. Batch-runs, process visual-
ization (see Fig.5), as well as automated measure-
ments of individually defined performance indica-
tors allow fast and valid process evaluations.

Luftbild1.png

Figure 5. The PlaSMA simulation platform.

5 Evaluation

To verify the system’s performance and show
its applicability, we simulated real-world scenar-
ios based on orders provided by our industrial part-
ner as well as on transport infrastructures imported
from OpenStreetMap databases. In Section 5.2, we
evaluate the overall performance of implementing
autonomous groupage traffic and focus on the deci-
sion making process by investigating at the impact
of interrupting the solver if a fixed number of ex-
pansions is exceeded. To verify the systems per-
formance quantitatively and show its applicability,

Section 5.3 provides the result of a case study con-
ducted in one of the offices of our industrial partner.

5.1 Experimental Setup

In our investigation we integrate the road net-
work of Northern Germany. The whole modeled
transport infrastructure contains 156,722 nodes and
365,609 edges. It includes all relevant highways,
motorways, and inner city roads of the Open-
StreetMap database. In order to prevent deadlocks
caused by inaccurate data, nodes that cannot be
reached from or to the depot of the transport service
provider are removed.

Table 2. The amount and capacities of modeled
vehicles within the experiments.

# Trucks 7.5 tons 12.5 tons 32 tons
80 30 20 30
60 10 20 30
40 0 10 30

The dispatched orders are provided by our in-
dustrial partner. We start a reverse geocoding pro-
cess to map the address information to coordinates
and determined the nearest neighbor node in the
map, to link the addresses with graph nodes. The
real weight, premium service constraints, latest de-
livery times, as well as the incoming dates of deliv-
eries are attached to the order. Since exact incom-
ing dates with timestamps of pickup orders are not
available, only the date is considered during evalu-
ation. Thus, we modeled the dynamics by setting
the incoming date of every 10th pickup order to a
random time of the day during operation. In real
transport processes, vehicles with interchangeable
units are sent to stops that have to be visited on a
daily basis by fixed schedules. Consequently, we
do not consider these orders. In each experiment
7,575 orders are distributed within a whole week.

The reproducibility of results with the same in-
put data is guaranteed by the simulation platform
(see Section 4). All simulation runs are computed
in a few hours on a laptop computer (equipped with
an Intel Quad-Core i7 processor). Consequently,
the system satisfies the runtime requirements for an
application in real planning and control processes.

3For instance, for double precision floating data on a 64 bit machine it is bounded by log(DoulbeMaxValue) = 1024.
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5.2 Evaluation of Autonomous
Groupage Traffic

In the overall evaluation, we simulate a hetero-
geneous fleet of vehicles with varying capacities of
7.5 and 12.5 tons as well as trucks with swap bod-
ies that have a maximum capacity of 32 tons. In
addition, we assume shift-work between 5 am and
7 pm and set the maximum velocity of trucks to
120 km/h. Note that the maximum possible veloc-
ity is reduced by the corresponding speed limit of
the road sectors. The handling and waiting periods
at incoming goods departments is set to 10 minutes
for each order. Table 2 depicts the vehicles and their
capacities modeled in the experiments. Therefore,
we investigate the strategy to raise the number of
small-sized trucks to increase the transport volume.

Figure 6 depicts the amount of transported de-
livery and pickup orders as well as the number of
service requests that cannot be satisfied.

results6.png

Figure 6. The delivered, picked up, and not
transported shipments after the simulation of three
scenarios of a whole week with a varying number

of trucks.

It shows that the agent system is well suited to
its application in groupage traffic. Dynamically in-
coming orders, the heterogeneous fleet, as well as
individual properties of shipments are considered in
the dispatching processes. Pickup and delivery or-
ders are combined in valid tours without exceeding
the maximum capacity of any truck.

It is obvious, that the number of transported
shipments is increasing with the amount of avail-
able trucks. Nevertheless, the significant reduction
of available trucks has only small effects on the ef-

ficiency of the whole system. This is caused by our
strategy to remove small-sized trucks at first.

results7.png

Figure 7. Transported and not transported
premium services in the corresponding experiment.

Moreover, the results shown in Figure 7 pin-
point that the agent system considers all premium
services with higher priorities than conventional or-
ders. While the percentage of transported orders is
reduced by nearly 10% if the number of available
trucks is decreased, the amount of not transported
premium services remains constant.

If all trucks have left the depot, new incoming
delivery requests cannot be accommodated on this
day (assuming that each truck is driving a single
tour per day). Consequently, even if enough trucks
are available about 259 service requests are not pro-
cessed in the whole week.

results8.png

Figure 8. Expansions of each TSP within the
agent’s decision making process in correlation with
transported shipments in scenarios with 40, 60, and

80 trucks.
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By delegating the decision making process to
decentralized entities the overall VRP is split into
smaller TSPs that can be solved efficiently by each
agent with Algorithm 3.2. Figure 8 shows the max-
imum number of expansions of Algorithm 3.2 and
the impact to successfully transported shipments.
The TSP solver already finds adequate solutions af-
ter expanding 300.000 nodes. It should be noted,
that expanding more nodes in each TSP is negligi-
ble for the solution quality of the overall VRP. As a
result, the applied pruning rules reduce the problem
space significantly, if we evaluate the solver with
real world orders.

5.3 Utility, Advantages and a Case Study

To verify the system performance in real world
application, we constitute a consistent scenario
based on the processes and orders of our coopera-
tion partner. Subsequently, the results of simulated
scenarios are compared to performance indicators
which have been measured in current processes. In
this section, we conclude with the benefit and the
advantages observed in the case study.

In the case study, we simulated a whole month
including all effectively transported orders (more
than 1000 per day) and the real fleet operated within
the simulated time window. In addition, exact prop-
erties of the orders are provided by the our indus-
trial partner (see Section 5.1). The modeled fleet
reflects real speed limits as well as capacities. Note
that also in this investigation the maximum possi-
ble velocity is reduced by the corresponding speed
limit of the road sectors. In addition, we simulate
that each cargo handling operation of shipments (up
to 300 kg) consumes 15 minutes. Process distur-
bances, e.g., if the delivery is not possible, are iden-
tified in the real process data and simulated respec-
tively. Measured performance indicators were spec-
ified in cooperation with the controlling department
of our industrial partner.

While in current processes routes are deter-
mined by each freight carrier manually, the sys-
tem increases the efficiency by providing optimal
and factual proposals at the start of a shift. It
checks hard constraints automatically and acceler-
ates the decision-making of freight carriers. As a
result, each freight carrier saves about 20 minutes
time each day, because route proposals are com-
puted automatically and have to be checked only.

Moreover, the continuous process monitoring im-
proves the transparency. The current positions of
each shipment are visualized and additional infor-
mation about each load is provided, e.g., the effec-
tive weight, the estimated time of arrival, and its
volume. This information can also be applied to fur-
ther optimize and synchronize the supply chain. For
instance, the estimated time of arrival can be sent
automatically to the incoming goods departments
of customers (e.g., via apps), who start preparing
the receipt of goods or proactively send a message
indicating that a delay is expected. Consequently,
the freight carriers can react on the changing situa-
tion in advance and adapt tours and routes if neces-
sary. In addition, the dispatching system increases
the customer service level by reliable pickups and
deliveries. At each step of the process the system
checks time windows as well as the premium ser-
vice constraints.

The results reveal an increasing efficiency and
a significant reduction of cost by applying the
agent-based dispatching system in groupage traffic.
Therefore, the number of stops is reduced by an av-
erage of 29%. The agent system enables an efficient
grouping of packages at a certain pickup or delivery
location. Consequently, loads at the same location
are transported by a single vehicle (if it is possible).
Indirectly, this is also achieved by shifting conven-
tional orders to following days. Thus, the probabil-
ity of bundling shipments in increasing.

Moreover, the number of shipments which have
to be transported by an external transport provider
is reduced by an average of 82%. This is due to
prioritizing the transport of premium services in the
planning process and to shifting the delivery of con-
ventional orders to next days if a premium service
can be delivered instead. In addition, the agent sys-
tem improves the reactions on the daily changing
order situation and unexpected events. Also during
operation the main goal is to maximize the amount
of premium services.

Finally, we analized all tours and routes of an
arbitrary day in cooperation with the dispatcher
of our industrial partner in detail. Therefore, we
prepared a visualization of all tours and routes in
Google Earth including stops and additional infor-
mation such as the time of arrival, the weight of
the freight, the number pickup or delivery units at a
stop, the maximum capacity of the truck, the work-
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ing time of the freight carriers, the total delivery
weight of a tour, and the total pickup weight of the
tour. The discussion focused on several important
aspects such as the length of routes, the working
times of the freight carriers, the capacities of the
trucks, guaranteed time windows of orders, vehi-
cle restrictions with respect to the transport infras-
tructure, as well as special situations in which the
knowledge of the dispatcher is essential. In con-
clusion, this analysis proves the road capability as
well as the suitability for the daily use of auto-
matically computed tours and routes as tours and
routes were considered to be adequate and realiz-
able. While the agent-based dispatching system
considers more constraints and options within the
planning processes to increase the potential of op-
timization, the human dispatcher is capable to fur-
ther improve proposals selectively with his/her ex-
pert knowledge which is not modeled in the current
system.

6 Conclusion and Outlook

To face the high complexity in groupage traf-
fic and the dynamics of consecutively incoming or-
ders, we provided a reactive and proactive multia-
gent system for the planning and control processes
of a forwarding agency. Agents link the planning
and scheduling processes directly to the actions of
their represented vehicles and shipments. There-
fore, both internal and external changes are consid-
ered during runtime and induce a reactive behav-
ior. The focus is on the planning and decision mak-
ing processes of the agents to develop an efficient
Traveling Salesman Problem (TSP) solver which is
crucial for negotiations between agents. The solver
supports the combination of pickup and delivery
tours without exceeding the maximum capacity of
the vehicles and considers time windows, handling
times, and request priorities. Applying bitvector op-
erations allows for constraint checks in O(1) time
and space. It is shown that the anytime behavior
of the TSP algorithm accelerates the search without
significant impact to the solutions’ quality.

To evaluate the dispatching system, we simu-
lated several scenarios using the PlaSMA simula-
tion platform with real orders provided by our in-
dustrial partner. The results reveal that applying the
agent system is adequate in dynamic scenarios with

daily varying amounts of orders, unknown requests,
and heterogeneous properties. The system is de-
signed to meet the special requirements in groupage
traffic. It supports the combination of pickup and
delivery tours and considers all relevant constraints.
Moreover, the system maximizes the number of
transported premium services as well as the pro-
cessing amount of conventional orders. It computes
shortest routes for each vehicle. The agent-based
system supports dispatchers and contracted freight
carriers during operations. It automatically controls
the processes and adapts plans on the detection of
delays or a changing order situation.

In a further application, forwarding agencies are
able to integrate historical and anticipated orders
into the simulation platform for the evaluation of
different transport strategies. For instance, man-
agers may investigate the effects of engaging more
or less trucks.

In our further research, we will investigate the
integration of a state-of-the-art Vehicle Routing
Problem (VRP) solver to improve the rough plan-
ning processes. Afterwards, the vehicle agents may
improve the route proposals and check problem spe-
cific requirements which are not covered by solver
in general. Subsequently, the agent system will im-
prove the overall performance with its flexible be-
havior in dynamic environments.

Profit sharing methods for freight carriers might
be considered to promote further cooperation also
between companies (e.g., [27]). As a result, these
methods potentially increase the efficiency of for-
warding agencies and reduce the amount of orders
that must be transported by cost-intensive external
operators.

Future investigations will include different op-
timization criteria such as the reduction of CO2
emissions. For instance, longer tours can be CO2-
efficient given that a smaller load leads to less fuel
consumption.
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