Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The analysis of advisability and profitability of using an air to water heat pump for the purpose of waste heat recovery from servers being used as cryptocurrency mining rigs, was performed. To carry out such an analysis, the cooling unit of the computing server was connected to the heat pump, and the entire system was adequately equipped with devices measuring parameters of the process. Performed experiments proves that the heat pump coefficient of performance (COP) reaches satisfactory values (i.e., an average of 4.21), what is the result of stable and high-temperature source of heat at the pump inlet (i.e., in the range of 29.9-34.1). Economic analysis shows a significant reduction in the cost of heating domestic hot water (by nearly 59-61%). The main conclusion which can be drawn from the paper, is that in a case of having a waste heat source in a form of a server or similar, it is advisable to consider the purchase of air-to-water heat pump for the purpose of domestic hot water heating.
Słowa kluczowe
Rocznik
Tom
Strony
105--113
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Katedra Elektrotechniki, Energetyki, Elektroniki i Automatyki, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski, ul. Oczapowskiego 11, 10-719 Olsztyn
autor
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn
autor
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn
- SKN Eko-Energia
Bibliografia
- Adamkiewicz A., Nikończuk P. 2019. Waste heat recovery from the air preparation room in a paint shop. Archives of Thermodynamics, 40(3): 229-241.
- Carroll P., Chesser M., Lyons P. 2020. Air Source Heat Pumps field studies: A systematic literature review. Renewable and Sustainable Energy Reviews, 134: 110275.
- Cena prądu. http://www.cena-pradu.pl/(access: 31.12.2020).
- Deymi-Dashtebayaz M., Valipour-Namanlo S. 2019. Thermoeconomic and environmental feasibility of waste heat recovery of a data center using air source heat pump. Journal of Cleaner Production, 219: 117-126.
- Ebrahimi K., Jones G.F., Fleischer A.S. 2014. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable and Sustainable Energy Reviews, 31: 622-638.
- Hu B., Liu H., Wang R.Z., Li H., Zhang Z., Wang S. 2017. A high-efficient centrifugal heat pump with industrial waste heat recovery for district heating. Applied Thermal Engineering, 125: 359-365.
- Huang F., Zheng J., Baleynaud J.M., Lu J. 2017. Heat recovery potentials and technologies in industrial zones. Journal of the Energy Institute, 90(6): 951-961.
- Hundy G.F., Trott A.R., Welch T.C. 2016. Refrigeration, Air Conditioning and Heat Pumps. Butterworth-Heinemann, Oxford.
- Instytut Meteorologii i Gospodarki Wodnej. Dane publiczne IMGW-PIB. https://dane.imgw.pl/ (access: 15.01.2021).
- Jouhara H., Khordehgah N., Almahmoud S., Delpech B., Chauhan A., Tassou S.A. 2018. Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6: 268-289.
- Kosmadakis G. 2019. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries. Applied Thermal Engineering, 156: 287-298.
- Lake A., Rezaie B., Beyerlein S. 2017. Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews, 67: 417-425.
- Lall P., Pecht M., Hakim E.B. 1997. Influence of Temperature on Microelectronics and System Reliability: A Physics of Failure Approach. CRC Press, New York.
- Martinopoulos G., Papakostas K.T., Papadopoulos A.M. 2018. A comparative review of heating systems in EU countries, based on efficiency and fuel cost. Renewable and Sustainable Energy Reviews, 90: 687-699.
- Ochsner K. 2012. Geothermal heat pumps: a guide for planning and installing. Routledge, London.
- Oró E., Taddeo P., Salom J. 2019. Waste heat recovery from urban air cooled data centres to increase energy efficiency of district heating networks. Sustainable Cities and Society, 45: 522-542.
- Salehi S., Yari M. 2019. Exergoeconomic assessment of two novel absorption-ejection heat pumps for the purposes of supermarkets simultaneous heating and refrigeration using NaSCN/NH3, LiNO3/ NH3 and H2O/NH3 as working pairs. International Journal of Refrigeration, 101: 178-195.
- Schlosser F., Jesper M., Vogelsang J., Walmsley T.G., Arpagaus C., Hesselbach J. 2020. Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration. Renewable and Sustainable Energy Reviews, 133: 110219.
- Self S.J., Reddy B.V., Rosen M.A. 2013. Geothermal heat pump systems: Status review and comparison with other heating options. Applied Energy, 101: 341-348.
- Singh S., Dasgupta M.S. 2017. CO2 heat pump for waste heat recovery and utilization in dairy industry with ammonia based refrigeration. International Journal of Refrigeration, 78: 108-120.
- Wang K., Li N., Peng J., Wang X., Wang C., Wang M. 2017. A highly efficient solution for thermal compensation of ground-coupled heat pump systems and waste heat recovery of kitchen exhaust air. Energy and Buildings, 138: 499-513.
- Xu Z.Y., Mao H.C., Liu D.S., Wang R.Z. 2018. Waste heat recovery of power plant with large scale serial absorption heat pumps. Energy, 165: 1097-1105.
- Yang M., Xiao F., Guilian L. 2016. Heat integration of heat pump assisted distillation into the overall process. Applied Energy, 162: 1-10.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b911e63-0682-4808-8370-661ba168e807