Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the analysis and comparison of the results of mechanical testing of dumbbell-shaped specimens and multifunctional fixation miniplates made via injection forming. Three types of materials were used: a) polylactic acid; b) a composite made of a polylactic acid matrix modified with tricalcium phosphate β-TCP; c) a composite made of a polylactic acid matrix modified with a mixture of bioceramic powders of tricalcium phosphate β-TCP and hydroxyapatite HAp. All the samples were stored in normal conditions, no special treatment was applied. Tests were conducted right after samples were prepared and they were repeated two and four years after preparation. The values of basic mechanical parameters and stress-strain curves were recorded and analyzed. The attention was focused on changes in time of tensile strength and stiffness of materials and implants. It was discovered that having been stored for four years in the open air, without sunlight, with no hermetic sealing, and no sterilization, all the materials (PL38, PL38/TCP, PL38/TCP/HAp) showed slight changes in mechanical characteristics when compared to the data of the initial samples tested after fabrication. These changes were not critical and did not adversely affect either tensile strength or Young’s modulus of the implants. All the analyzed miniplates maintained their mechanical properties at an acceptable level, fulfilling requirements for fixation devices for osteosynthesis. Therefore, it was proposed that the expiry date of these implants can be indirectly determined, based on long-term mechanical testing.
Czasopismo
Rocznik
Tom
Strony
20--25
Opis fizyczny
Bibliogr. 10 poz., rys., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Marciniak J., Błażewicz S.: Biomateriały, Tom 4, Akademicka Oficyna Wydawnicza Exit, 2016
- [2] Lincoln R.L., Scarpa F., Ting V.P., Trask R.S.: Multifunctional composites: a metamaterial perspective. Multifunct. Mater. 2 (2019) 043001.
- [3] Gryń K., Szaraniec B., Morawska-Chochół A., Chłopek J.: Mechanical characterization of multifunctional resorbable composite plate for osteosynthesis. Engineering of Biomaterials 133 (2015) 22-33.
- [4] Kudzia-Karwowska D.: Czynniki warunkujące okres przydatności wyrobów medycznych. Technika i technologia. Ogólnopolski Przegląd Medyczny 11 (2013) 15-17.
- [5] Elsawy M.A., Ki-Hyun K., Akash J.W., Deep A.: Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews 79 (2017) 1346-1352.
- [6] Kulkarni A., Dasari H.: Current Status of Methods Used In Degradation of Polymers: A Review, MATEC Web of Conferences 144, 02023 (2018).
- [7] Rivaton A., Gardette J.L., Mailhot-Jensen B.: Basic Aspects of Polymer Degradation, Macromol. Symp. 225 (2005) 129-146.
- [8] Szaraniec B., Gryń K., Szponder T., Żylińska B.: Biodegradable fixation plates for veterinary medicine. Engineering of Biomaterials 125 (2014) 30-36.
- [9] dos Santos V., Brandalise R.N., Savaris M.: Engineering of Biomaterials, Springer International Publishing 2017, ISBN 978- 3-319-58607-6.
- [10] Yuehuei H., Rob. Draughn R.: Mechanical Testing of Bone and the Bone-Implant Interface, CRC Press; 1st edition (November 29, 1999), ISBN-13: 978-0849302664
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b90ed8b-1bab-42fa-94e5-7533aa42fda6