PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Carbon Nanotubes on the Mechanical and Electrical Properties of Silicone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a structure study of a dispersion composite on a silicone matrix with a filler in the form of multi-walled carbon nanotubes (MWCNTs). The study aims to determine the effect of the filler on the composite mechanical properties and electrical conductivity. Materials that are electrically conductive and exhibit high mechanical properties can find applications in high-strain sensors. During the study, the characteristic properties of the susceptible materials, silicone alone and silicone with different filler contents (4%, 6%, and 8% by weight), were determined after curing. Microscopic observations were performed to assess the influence of carbon fillers on the material structure and to determine the level of homogeneity of the material. Examination of mechanical properties facilitated the determination of the Shor A hardness (ShA), stiffness, and Poisson’s ratio of the cured composites, depending on the nanotubes’ content. In parallel with the study of mechanical properties, the effect of loading, and the associated deformation of the samples, on the conductivity of the composite was investigated. Based on the results obtained, a discussion was carried out on the type of conductivity characteristic of silicone with different filler content as well as depending on the level of deformation of the samples.
Rocznik
Tom
Strony
135--153
Opis fizyczny
Bibliogr. 52 poz., rys., wykr., wzory
Twórcy
  • Air Force Institute of Technology 01-494 Warsaw, Ksiecia Boleslawa 6
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering 02-507 Warsaw, Woloska 141
  • Łukasiewicz Research Network - Institute of Aviation 02-256 Warsaw, Aleja Krakowska 110/114
  • Warsaw University of Technology, Faculty of Materials Science and Engineering 02-507 Warsaw, Woloska 141
  • Polish Air Force University 08-521 Deblin, Dywizjonu 303 35
  • Air Force Institute of Technology 01-494 Warsaw, Ksiecia Boleslawa 6
Bibliografia
  • Bachmatiuk, A. (2008). Badania nad technologią otrzymywania i właściwościami nanorurek węglowych [Unpublished doctoral dissertation]. Politechnika Szczecińska, Wydział technologii i Inżynierii Chemicznej.
  • Bakar Sulong, A., Muhamad, N., Sahari, J., Ramli, R., Md Deros, B., & Park, J. (2009). Electrical Conductivity Behaviour of Chemical Functionalized MWCNTs Epoxy Nanocomposites. European Journal of Scientific Research, 29(1), 13-21.
  • Barros, E. B., Jorio, A., Samsonidze, G. G., Capaz, R. B., Souza Filho, A. G., Mendes Filho, J., Dresselhaus, G., & Dresselhaus, M. S. (2006). Review on the symmetry-related properties of carbon nanotubes. Physics Reports, 431(6), 261-302.
  • Baughman, R. H., Shacklette, J. M., Zakhidov, A. A., & Stafström, S. (1998). Negative Poisson’s ratios as a common feature of cubic metals. Nature, 392(6674), 362-365.
  • Bielanski, A. (1980). Chemia Fizyczna. Państwowe Wydawnictwo Naukowe PWN.
  • Borowiak-Palen, E., Pichler, T., Liu, X., Knupfer, M., Graff, A., Jost, O., Pompe, W., Kalenczuk, R. J., & Fink, J. (2002). Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chemical Physics Letters, 363(5-6), 567-572.
  • Cardona-Uribe, N., Betancur, M., & Martínez, J. D. (2021). Towards the chemical upgrading of the recovered carbon black derived from pyrolysis of end-of-life tires. Sustainable Materials and Technologies, 28, Article e00287.
  • Ciecierska, E., Boczkowska, A., Chabera, P., Wiśniewski, T., & Kubiś, M. (2015). Epoxy composites with carbon fillers. Structure and properties Kompozyty żywicy epoksydowej z napełniaczami węglowymi. Struktura i właściwości. Przemysł Chemiczny, 1(11), 159-163.
  • Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., & Vahid, S. (2015). Improving the fracture toughness and the strength of epoxy using nanomaterials - a review of the current status. Nanoscale, 7(23), 10294-10329.
  • Dydek, K., Boczkowska, A., Kozera, R., Durałek, P., Sarniak, Ł., Wilk, M., & Łogin, W. (2021). Effect of SWCNT-Tuball Paper on the Lightning Strike Protection of CFRPs and Their Selected Mechanical Properties. Materials, 14(11), 3140.
  • Frigione, M., Naddeo, C., & Acierno, D. (2001). Cold-Curing Epoxy Resins: Aging and Environmental Effects. I - Thermal Properties. Journal of Polymer Engineering, 21(1).
  • Ganesh, M., Lavenya, K., Kirubashini, K., Ajeesh, G., Bhowmik, S., Epaarachchi, J., & Yuan, X. (2017). Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding. Advances in Aircraft and Spacecraft Science, 4(6), 729-744.
  • Gardea, F., & Lagoudas, D. C. (2014). Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites Part B: Engineering, 56, 611-620.
  • Geipel, T., Meinert, M., Kraft, A., & Eitner, U. (2018). Optimization of Electrically Conductive Adhesive Bonds in Photovoltaic Modules. IEEE Journal of Photovoltaics, 8(4), 1074-1081.
  • Gogurla, N., Roy, B., Park, J.-Y., & Kim, S. (2019). Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy, 62, 674-681.
  • Gojny, F. H., Wichmann, M. H. G., Köpke, U., Fiedler, B., & Schulte, K. (2004). Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 64(15), 2363-2371.
  • Hagita, K., & Morita, H. (2019). Effects of polymer/filler interactions on glass transition temperatures of filler-filled polymer nanocomposites. Polymer, 178, 121615.
  • Hall, L. J., Coluci, V. R., Galvao, D. S., Kozlov, M. E., Zhang, M., Dantas, S. O., & Baughman, R. H. (2008). Sign Change of Poisson’s Ratio for Carbon Nanotube Sheets. Science, 320(5875), 504-507.
  • Huczko, A. (2004). Nanorurki Weglowe. Czarne diamenty XXI wieku. BEL STUDIO.
  • Iijima, S. (2002). Carbon nanotubes: past, present, and future. Physica B: Condensed Matter, 323(1-4), 1-5.
  • Krainoi, A., Johns, J., Kalkornsurapranee, E., & Nakaramontri, Y. (2021). Carbon Nanotubes Reinforced Natural Rubber Composites. In P. Ghosh, K. Datta, & A. Rushi (Eds.), Carbon Nanotubes - Redefining the World of Electronics. IntechOpen.
  • Królikowski, W., & Rosłaniec, Z. (2004). Nanokompozyty polimerowe. Kompozyty, 4(9), 3-15.
  • Kumar, V., Alam, M. N., Manikkavel, A., Song, M., Lee, D.-J., & Park, S.-S. (2021). Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review. Polymers, 13(14), 2322.
  • Kumar, V., Kumar, A., Han, S. S., & Park, S.-S. (2020). RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science.
  • Kumar, V., Kumar, A., Song, M., Lee, D.-J., Han, S.-S., & Park, S.-S. (2021). Properties of Silicone Rubber-Based Composites Reinforced with Few-Layer Graphene and Iron Oxide or Titanium Dioxide. Polymers, 13(10), 1550.
  • Kumar, V., & Lee, D.-J. (2016). Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber. Journal of Applied Polymer Science, 134(4).
  • Kumar, V., Lee, G., Monika, Choi, J., & Lee, D.-J. (2020). Studies on composites based on HTV and RTV silicone rubber and carbon nanotubes for sensors and actuators. Polymer, 190, 122221.
  • Lakes, R. (1987). Foam Structures with a Negative Poisson’s Ratio. Science, 235(4792), 1038-1040.
  • Latko-Durałek, P., Kozera, R., Macutkevič, J., Dydek, K., & Boczkowska, A. (2020). Relationship between Viscosity, Microstructure and Electrical Conductivity in Copolyamide Hot Melt Adhesives Containing Carbon Nanotubes. Materials, 13(20), 4469.
  • Lee, J.-Y., Kumar, V., Tang, X.-W., & Lee, D.-J. (2017). Mechanical and electrical behavior of rubber nanocomposites under static and cyclic strain. Composites Science and Technology, 142, 1-9.
  • Li, C., Chen, X., & Zhimin, D. (2004). A New Relationship of Rock Compressibility with Porosity. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, October 2004.
  • Limpert, E., & Stahel, W. A. (2011). Problems with Using the Normal Distribution - and Ways to Improve Quality and Efficiency of Data Analysis. PLoS ONE, 6(7), Article e21403.
  • Liu, Q., Lomov, S. V., & Gorbatikh, L. (2020). Enhancing Strength and Toughness of Hierarchical Composites through Optimization of Position and Orientation of Nanotubes: A Computational Study. Journal of Composites Science, 4(2), 34.
  • Liu, Q., Shi, W., Chen, Z., Li, K., Liu, H., & Li, S. (2019). Rubber accelerated ageing life prediction by Peck model considering initial hardness influence. Polymer Testing, 80, 106132.
  • Lopes, P., Moura, D., Freitas, D., Proença, M., Figueiredo, R., Alves, H., & Paiva, M. (2019). Advanced electrically conductive adhesives for high complexity PCB assembly. AIP Conf. Proc. 22 January 2019, 2055(1), 090009.
  • Ma, P.-C., Mo, S.-Y., Tang, B.-Z., & Kim, J.-K. (2010). Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48(6), 1824-1834.
  • Mucha, M., Krzyzak, A., Kosicka, E., Coy, E., Kościński, M., Sterzyński, T., & Sałaciński, M. (2020). Effect of MWCNTs on Wear Behavior of Epoxy Resin for Aircraft Applications. Materials, 13(12), 2696.
  • (n.d.). GRUPA WOLFF.
  • Nicolau-Kuklińska, A., Latko-Durałek, P., Nakonieczna, P., Dydek, K., Boczkowska, A., & Grygorczuk, J. (2017). A new electroactive polymer based on carbon nanotubes and carbon grease as compliant electrodes for electroactive actuators. Journal of Intelligent Material Systems and Structures, 29(7), 1520-1530.
  • Nobile, M. R. (2011). Rheology of polymer-carbon nanotube composites melts. In T. McNally & P. Pötschke (Eds.), Polymer-Carbon Nanotube Composites (pp. 428-481). Woodhead Publishing.
  • Plagge, J., & Lang, A. (2021). Filler-polymer interaction investigated using graphitized carbon blacks: Another attempt to explain reinforcement. Polymer, 218, 123513.
  • Przygocki, W., & Włochowicz, A. (2001). Fulereny i nanorurki - Właściwosci i zastosowanie. Wydawnictwo Naukowo-Techniczne.
  • Rodríguez-Prieto, A., Primera, E., Frigione, M., & Camacho, A. M. (2021). Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements. Polymers, 13(6), 943.
  • Rosca, I. D., & Hoa, S. V. (2009). Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon, 47(8), 1958-1968.
  • Sajith, S. (2019). Investigation on effect of chemical composition of bio-fillers on filler/matrix interaction and properties of particle reinforced composites using FTIR. Composites Part B: Engineering, 166, 21-30.
  • Sivaselvi, K., Varma, V. S., Harikumar, A., Jayaprakash, A., Sankar, S., Krishna, C. Y., & Gopal, K. (2021). Improving the mechanical properties of natural rubber composite with carbon black (N220) as filler. Materials Today: Proceedings, 42, 921-925.
  • Smoleń, P., Czujko, T., Komorek, Z., Grochala, D., Rutkowska, A., & Osiewicz-Powęzka, M. (2021). Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes. Materials, 14(12), 3325.
  • Terranova, M. L., Sessa, V., & Rossi, M. (2006). The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chemical Vapor Deposition, 12(6), 315-325.
  • Yadav, S. G., Guntur, N. P. R., N., R., & Gopalan, S. (2021). Effect of titanium carbide powder as a filler on the mechanical properties of silicone rubber. Materials Today: Proceedings, 46, 665-671.
  • Yang, H., Yao, X., Zheng, Z., Gong, L., Yuan, L., Yuan, Y., & Liu, Y. (2018). Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing. Composites Science and Technology, 167, 371-378.
  • Yeganeh-Haeri, A., Weidner, D. J., & Parise, J. B. (1992). Elasticity of agr-Cristobalite: A Silicon Dioxide with a Negative Poisson’s Ratio. Science, 257(5070), 650-652.
  • Zhang, X., Cai, L., He, A., Ma, H., Li, Y., Hu, Y., Zhang, X., & Liu, L. (2021). Facile strategies for green tire tread with enhanced filler-matrix interfacial interactions and dynamic mechanical properties. Composites Science and Technology, 203, 108601.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b90317b-cd02-48f8-9192-66a135eed890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.