PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Andean Grassland Species: Net Aerial Primary Productivity, Density, Ecomorphological Indices, and Soil Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tall grass vegetation in the Andean grassland ecosystems covers the largest area compared to other types of vegetation such as Puna grass, wetland and others. The grasslands are frequently set on fire by livestock farmer, seriously affecting the ecosystem. One way to mitigate this problem is to use these species as a source of plant fibre, which can be economically useful to the interests of the livestock family without affecting the ecosystem. To advance in this approach, it is necessary to know the functional characteristics of the plants; therefore, we evaluated the aerial primary productivity, plant density per m2, basal cover, aerial cover and leaf height, whose data were analysed using the generalised linear mixed model and the correlation between these variables with the physical-chemical characteristics of the soil, by means of principal component analysis and canonical correlation, in seven species of grassland and seven control plots, located between 3860 and 4333 metres above sea level. The results showed significant differences for p=0.001 between species, and between plots, and a canonical correlation grouped in two clusters that showed the differentiated importance of soil elements with the phytomass produced.
Rocznik
Strony
163--175
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Centro de Investigación en Alta Montaña de la Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909, CEP 12006 El Tambo, Huancayo, Perú
  • KU Leuven, Department of Materials Engineering Leuven, Belgium
  • Asociación Civil Ecosistema & Desarrollo Sostenible, Calle Imancipación 131 Urb. Sta Patricia, Perú
  • Asociación Civil Ecosistema & Desarrollo Sostenible, Calle Imancipación 131 Urb. Sta Patricia, Perú
  • Facultad de Zootecnia de la Universidad Nacional del Centro del Perú, Huancayo, Perú
  • Facultad de Zootecnia de la Universidad Nacional del Centro del Perú, Huancayo, Perú
  • Facultad de Zootecnia de la Universidad Nacional del Centro del Perú, Huancayo, Perú
  • KU Leuven, Department of Materials Engineering Leuven, Belgium
  • Luxembourg Institute of Science and Technology, Materials Research and Technology Department, L-4940 Hautcharage, Luxembourg
Bibliografia
  • 1. Albrecht M.A., Becknell R.E., Long Q. 2016. Habitat change in insular grasslands: Woody encroachment alters the population dynamics of a rare ecotonal plant. Biological Conservation, 196, 93–102. DOI: 10.1016/j.biocon.2016.01.032
  • 2. Ali S., Hayat R., Begum F., Bohannan B.J.M., Inebert L., Meyer K. 2017. Variation in soil physical, chemical and microbial parameters under different land uses in Bagrot valley, Gilgit, Pakistan. Journal of the Chemical Society of Pakistan, 39(1).
  • 3. Andrade B.O., Koch C., Boldrini I.I., Vélez-Martin E., Hasenack H., Hermann J.M., Overbeck G.E. 2015. Grassland degradation and restoration: A conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza e Conservacao, 13(2), 95–104. DOI: 10.1016/j.ncon.2015.08.002
  • 4. Beltran M., Rocha Z., Bernal A., Pita, L. 2017. Microorganisms funcionales con suelos con y sin revegetalización en el municipio de Villa de Leyva, Boyacá. Colombia Forestal, 20(2), 158–170.
  • 5. Briske, D. 2017. Rangeland systems. Processes, management and challenges. DOI: 10.1007/978-3-319-46709-2_2
  • 6. Cabrera M. & Duivenvoorden J.F. 2020. Drivers of aboveground biomass of high mountain vegetation in the Andes. Acta Oecologica, 102(November 2018), 103504. DOI: 10.1016/j.actao.2019.103504
  • 7. Cai H., Yang X., Xu X. 2015. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecological Engineering, 83, 112–119. DOI: 10.1016/j.ecoleng.2015.06.031
  • 8. Catorci A., Tardella F.M., Velasquez J.L., Cesaretti S., Malatesta L., Zeballos H. 2014. How environment and grazing influence floristic composition of dry Puna in the southern Peruvian Andes. Phytocoenologia, 44(1–2), 103–119. DOI: 10.1127/0340-269X/2014/0044-0577
  • 9. Crespo G. 2011. Comportamiento de la materia orgánica del suelo en pastizales. Revista Cubana de Ciencia Agrícola, 45(4), 343–347.
  • 10. Cuesta F. & Becerra M.T. 2012. Biodiversidad y Cambio climático en los Andes : Importancia del monitoreo y el trabajo regional. Redesma, 6(1), 9–27.
  • 11. da Silveira Pontes L., Maire V., Schellberg J., Louault F. 2015. Grass strategies and grassland community responses to environmental drivers: a review.Agronomy for Sustainable Development, 35(4), 1297–1318. DOI: 10.1007/s13593-015-0314-1
  • 12. Dicovskiy Riobóo L.M., Pedroza Pacheco M.E. 2018. Modelos lineales generales y mixtos en la caracterización de la variable calificación, Ingeniería Agroindustrial, Uni-Norte. Nexo Revista Científica, 30(2), 84–95. DOI: 10.5377/nexo.v30i2.5527
  • 13. Ernst R.D., Morici E.A. 2013. Banco de semillas germinable de gramineas del Caldenal diferencias Pre y Post diseminacion. Revista de La Facultad de Agronomía- UNLPam, 22(2), 39–44.
  • 14. Fageria N.K. 2012. Role of soil organic matter in maintaining sustainability of cropping systems. Soil Science and Plant Analysis, 43(16), 2063–2113. DOI: 10.1080/00103624.2012.697234
  • 15. Fay P.A., Prober S.M., Harpole W.S., Knops J.M.H., Bakker J.D., Borer E.T., Yang L.H. 2015. Grassland productivity limited by multiple nutrients. Nature Plants, 1(July), 1–5. DOI: 10.1038/nplants.2015.80
  • 16. Fay P., Prober S., Stanley W., Bakker J., Borer E. 2015. Grassland productivity limited by multiple nutrients. Nature Plants, 1(15080), 1–5. DOI: 10.1038/nplants.2015.80
  • 17. Fiallos L., Herrera R.S., Velázquez R. 2015. Flora diversity in the Ecuadorian Páramo grassland ecosystem. Cuban Journal of Agricultural Science, 49(3). Retrieved from http://www.redalyc.org/pdf/1930/193042629015.pdf
  • 18. Forkel M., Dorigo W., Andela N., P Harrison S., Lasslop G., Forrest M., Arneth A. 2019. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 16(1), 57–76. DOI: 10.5194/bg-16-57-2019
  • 19. Getabalew M. & Alemneh T. 2019. Factors affecting the productivity of rangelands. MedPub Journals, 3(1:19), 1–6.
  • 20. Godde C.M., Boone R.B., Ash A.J., Waha K., Sloat L.L., Thornton P.K., Herrero M. 2020. Global rangeland production systems and livelihoods at threat under climate change and variability. Environmental Research Letters, 15(4). DOI: 10.1088/1748-9326/ab7395
  • 21. Gonnet J., López C., Aranibar D., Lictevout E. 2016. Manual de manejo de Vegas y bofedales. Santiago de Chile: Norte Grande.
  • 22. Hu Y. & Nacun B. 2018. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990-2015. Sustainability (Switzerland), 10(11).DOI: 10.3390/su10114048
  • 23. Loydi A., Funk F.A., García A. 2020. Vegetation recovery after fire in mountain grasslands of Argentina. Journal of Mountain Science, 17(2), 373–383. DOI: 10.1007/s11629-019-5669-3
  • 24. Martínez-Encino C., Villanueva-López G., Casanova-Lugo F. 2013. Densidad y composición de árboles dispersos en potreros en la Sierra de Tabasco, México. Agrociencia, 47(5), 483–496.
  • 25. Navarro E. 2018. Composición y estructura de las formaciones vegetales altoandinas en el distrito de Laraos, Lima, Perú, 194.
  • 26. Oksanen J. 2015. Multivariate analysis of ecological communities in R: vegan tutorial. DOI: 10.1016/0169-5347(88)90124-3
  • 27. Oliver V., Oliveras I., Kala J., Lever R., Teh Y.A. 2017. No long-term effect of land-use activities on soil carbon dynamics in tropical montane grasslands. Biogeosciences Discussions, 1–25. DOI: 10.5194/bg-2017-113
  • 28. Padilla F.M., Mommer L., de Caluwe H., Smit-Tiekstra A.E., Visser E.J.W., de Kroon H. 2019. Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community. Oecologia, 191(1), 177–190. DOI: 10.1007/s00442-019-04476-z
  • 29. Pham T.G., Nguyen H.T., Kappas M. 2018. Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. International Soil and Water Conservation Research, 6(4), 280–288. DOI: 10.1016/j.iswcr.2018.08.001
  • 30. Piqueray J., Ferroni L., Delescaille L.M., Speranza M., Mahy G., Poschlod P. 2015. Response of plant functional traits during the restoration of calcareous grasslands from forest stands. Ecological Indicators, 48, 408–416. DOI: 10.1016/j.ecolind.2014.08.039
  • 31. Ribeiro J., Marques J.E., Mansilha C., Flores D. 2020. Wildfires effects on organic matter of soils from Caramulo Mountain (Portugal): environmental implications. Environmental Science and Pollution Research, 2010(Fao 2013). DOI: 10.1007/s11356-020-10520-w
  • 32. Riesch F., Stroh H.G., Tonn B., Isselstein J. 2018. Soil pH and phosphorus drive species composition and richness in semi-natural heathlands and grasslands unaffected by twentieth-century agricultural intensification. Plant Ecology and Diversity, 00(00), 1–15. DOI: 10.1080/17550874.2018.1471627
  • 33. Shang L., Zhang Y., Lyu S., Wang S. 2016. Seasonal and inter-Annual variations in carbon dioxide exchange over an alpine grassland in the eastern Qinghai-Tibetan plateau. PLoS ONE, 11(11), 1–15. DOI: 10.1371/journal.pone.0166837
  • 34. Sun B., Li Z., Gao Z., Guo Z., Wang B., Hu X., Bai L. 2017. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League. Acta Ecologica Sinica, 37(4), 219–228. DOI: 10.1016/j.chnaes.2017.02.009
  • 35. Swanson J.C., Murphy P.J., Swanson S.R., Schultz B.W., McAdoo J.K. 2018. Plant Community Factors Correlated with Wyoming Big Sagebrush Site Responses to Fire. Rangeland Ecology and Management, 71(1), 67–76. DOI: 10.1016/j.rama.2017.06.013
  • 36. Tacuna R., Aguirre L., Flores E. 2015. Influencia de la revegetación con especies nativas y la incorporación de materia orgánica en la recuperación de pastizales degradados, 14(2), 191–200.
  • 37. Tacuna, Raul, Aguirre L., Flores E. 2015. Influence of Revegetation Using Native Species and The Incorporation of OrganicMatter in The Recovery of degraded. Ecoligia Aplicada, 14(2).
  • 38. Tovar O. 1993. Las gramineas (poacae) del Perú. Madrid: Mnografías del Real Jardín Botánico. Consejo Superior de Investigaciones Científicas. Madrid, 481.
  • 39. Tranmer M., Murphy J., Elliot M., Pampaka M. 2020. Multiple Linear Regression. Cathie Marsh Institute Workin Paper (2nd editio). Retrieved from https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/2020-1-multiple-linear-regression.pdf
  • 40. Ujházyová M., Ujházy K., Chytrý M., Willner W., Čiliak M., Máliš F., Slezák M. 2016. Diversity of beech forest vegetation in the Eastern Alps, Bohemian Massif and the Western Carpathians Diverzita vegetace bu č in Preslia, 88(December), 435–457.
  • 41. van Oijen M., Bellocchi G., Hglind M. 2018. Effects of climate change on grassland biodiversity and productivity: The need for a diversity of models. Agronomy, 8(2), 1–15. DOI: 10.3390/agronomy8020014
  • 42. Velásquez S., Peláes G., Giraldo D. 2016. Uso de fibras vegetales en materiales compuestos de matriz polimérica: una revisión con miras a su aplicación en el diseño de nuevos productos. Informador Técnico, 80(1), 77–86.
  • 43. Wang Z., Deng X., Song W., Li Z., Chen J. 2017. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena, 150, 100–107. DOI: 10.1016/j.catena.2016.11.014
  • 44. Wehn S., Anders Hovstad K., Johansen L. 2018. The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands. Web Ecology, 18(1), 55–65. DOI: 10.5194/we-18-55-2018
  • 45. Yaranga R. 2018. Ecological condition and animal carrying capacity in andean grasslands in Natural post cultivation restoration with Lepidium meyenii Walpers. International Journal of Engineering Sciences & Research Technology, 7(11), DOI: 10.5281/zenodo.1502551
  • 46. Yaranga R., Custodio M., Orellana E. 2019. Composition and floral diversity in andean grasslands in natural post-harvest restoration with Lepidium meyenii walpers. Revista Ambiente e Agua, 14(5). DOI: 10.4136/ambi-agua.2351.
  • 47. Yaranga Raúl. 2019. Ecosistemas de pastizal altoandino. (Centro de Investigación en Alta Montaña (CIAM) UNCP, Ed.). Huancayo, Perú.
  • 48. Zhao Y., Chi W., Kuang W., Bao Y., Ding G. 2020. Ecological and environmental consequences of ecological projects in the Beijing–Tianjin sand source region. Ecological Indicators, 112, 9. DOI: 10.1016/j.ecolind.2020.106111.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b8d96cb-31fb-4536-8717-8fe5db952e5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.