PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carrier concentration and in-plane mobility in both non-intentionally and Si-doped InAsSb and InAs/InAsSb type-II superlattice materials for space-based infrared detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The sensitivity of III-V-based infrared detectors is critically dependent upon the carrier concentration and mobility of the absorber layer, and thus, accurate knowledge of each is required to design structures for maximum detector performance. Here, measurements of the bulk in-plane resistivity, in-plane mobility, and carrier concentration as a function of temperature are reported for non-intentionally doped and Si-doped mid-wave infrared InAs₀.₉₁Sb₀.₀₉ alloy and InAs/InAs₀.₆₅Sb₀.₃₅ type-II superlattice materials grown on GaSb substrates. Standard temperature- and magnetic-field-dependent resistivity and the Hall measurements on mesa samples in the van der Pauw configuration are performed, and multicarrier fitting and modelling are used to isolate transport of each carrier species. The results show that up to 5 carrier species of the surface, interface and bulk variety contribute to conduction, with bulk electron and hole mobility up to 2·10⁵ cm²/V s and 8·10³ cm²/V s, respectively and background dopant concentration levels were between 10¹⁴ and 10¹⁵ cm¯³. The in-plane mobility temperatures dependence is determined and trends of each carrier species with temperature and dose are analysed.
Rocznik
Strony
art. no. e144554
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  • Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87185, USA
  • Center for High Technology Materials, University of New Mexico, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
  • School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, 25 Fairway, Crawley WA 6009, Australia
  • U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  • U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  • U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  • U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  • School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, 25 Fairway, Crawley WA 6009, Australia
  • Department of Electrical Engineering, The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
  • Center for High Technology Materials, University of New Mexico, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
Bibliografia
  • [1] Lee, D. et al. Law 19: The ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  • [2] Lee, D. et al. High-operating temperature HgCdTe: a vision for the near future. J. Electron. Mater. 45, 4587-4595 (2016). https://doi.org/10.1007/s11664-016-4566-6
  • [3] Elliott, T. Recollections of MCT work in the UK at Malvern and Southampton. Proc. SPIE 7298, 7298M (2009). https://doi.org/10.1117/12.820214
  • [4] European Union. Directive 2011/65/EU of The European Parliament and of the Council of 8 June 2011 on The Restriction of The Use of Certain Hazardous Substances in Electrical and Electronic Equipment. (updated in 2022). http://data.europa.eu/eli/dir/2011/65/2022-10-01 (2022).
  • [5] Roberts, T. G. Space Launch to Low Earth Orbit: How Much Does it Cost? https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/ (2022).
  • [6] Kosiak, S. Small Satellites in the Emerging Space Environment: Implications for U.S. National Security-Related Space Plans and Programs. Center for a New American Security, 2019.
  • [7] Rogalski, A. HgCdTe Photodetectors. in Mid-infrared Opto-electronics. Materials, Devices, and Appplications (eds. Tournie, E. & Cerutti, L) 235-335 (Elsevier, Duxford, 2020).
  • [8] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [9] Rogalski, A., Martyniuk, P., Kopytko, M., Madejczyk, P. & Krishna, S. InAsSb-based infrared photodetectors: thirty years later on. Sensors 20, 7047 (2020). https://doi.org/10.3390/s20247047
  • [10] Tennant, W. E. "Rule 07" Revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030-1035 (2010). https://doi.org/10.1007/s11664-010-1084-9
  • [11] Morath, C. P., Cowan, V. M., Treider, L. A., Jenkins, G. D. & Hubbs, J. E. Proton irradiation effects on the performance of III-V-based, unipolar barrier infrared detectors. IEEE Trans. Nucl. Sci. 62, 512–519 (2015). https://doi.org/10.1109/TNS.2015.2392695
  • [12] Jenkins, G. D., Morath, C. P.& Cowan, V. M. Empirical study of the disparity in radiation tolerance of the minority-carrier lifetime between II-VI and III-V MWIR detector technologies for space applications. J. Electron. Mater. 46, 5405-5410 (2017). https://doi.org/10.1007/s11664-017-5628-0
  • [13] Casias, L. K. Transport in Mid-Wavelength Infrared p- and n- InAsSb and InAs/InAsSb Type-II Strained Layer Superlattices for Infrared Detection. (University of New Mexico, 2019).
  • [14] Hoffman, C. A., Meyer, J. R., Youngdale, E. R. & Bartoli, F. J. Interface roughness scattering in semiconducting and semimetallic InAs/GaInSb. Appl. Phys. Lett. 63, 2210 (1993). https://doi.org/10.1063/1.110800
  • [15] Rao, T. V. Quantitative mobility spectrum analysis of carriers in GaSb/InAs/GaSb superlattice. J. Vac. Sci. Technol. B 26, 1081-1083 (2008). https://doi.org/10.1116/1.2839641
  • [16] Szmulowicz, F., Elhamri, S., Haugan, H. J., Brown, G. J. and Mitchel, W. C. Carrier mobility as a function of carrier density in type-II InAs/GaSb superlattices. J. Appl. Phys. 105, 074303 (2009). https://doi.org/10.1063/1.3103281
  • [17] Cervera, C. et al. Transport measurements on InAs/GaSb superlattice structures for mid-infrared photodiode. J. Phys. Conf. Ser. 193, 012030 (2009). https://doi.org/10.1088/1742-6596/193/1/012030
  • [18] Szmulowicz, F., Haugan, H.G., Elhamri, S., Brown, G.J. & Mitchel, W.C. Transport studies of MBE-grown InAs/GaSb superlattices. Opto-Electron. Rev. 18, 267-270 (2010). https://doi.org/10.2478/s11772-010-1027-6
  • [19] Brown, A.E. et al. Characterization of n-type and p-type long-wave InAs/InAsSb superlattices. J. Electron. Mater. 46, 5367-5373 (2017). https://doi.org/10.1007/s11664-017-5621-7
  • [20] Casias, L.K. et al. Carrier concentration and transport in Be-doped InAsSb for infrared sensing applications. Proc. SPIE 10624, 106240M (2018). https://doi.org/10.1117/12.2305431
  • [21] Taghipour, Z. et al. Temperature-dependent minority carrier mobility in p-type InAs/GaSb type-II-superlattice photodiodes. Phys. Rev. Appl. 11, 024047 (2019). https://doi.org/10.1103/PhysRevApplied.11.024047
  • [22] Olson, B.V. et al. Vertical hole transport and carrier localization in InAs/InAsSb type-II superlattice heterojunction bipolar transistors. Phys. Rev. Appl. 7, 024016 (2017). https://doi.org/10.1103/PhysRevApplied.7.024016
  • [23] Casias, L.K. et al. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Appl. Phys. Lett. 116, 182109 (2020). https://doi.org/10.1063/1.5144079
  • [24] Arounassalame, V. et al. Anisotropic transport investigation through different etching depths in InAs/InAsSb T2SL barrier midwave infrared detector. Infrared Phys. Technol. 126, 104315 (2022). https://doi.org/10.1016/j.infrared.2022.104315
  • [25] Antoszewski, J., Seymour, D.J., Faraone, L., Meyer, J.R. & Hoffman, C.A. Magneto-transport characterization using quantitative mobility-spectrum analysis (QMSA). J. Electron. Mater. 24, 1255–1262 (1995). https://doi.org/10.1007/BF02653082
  • [26] Beck, W.A. & Andersen, J.R. Determination of electrical transport properties using a novel magnetic field-dependent Hall technique. J. Appl. Phys. 62, 541-554 (1987). https://doi.org/10.1063/1.339780
  • [27] Umana-Membreno, G. A. Investigation of multicarrier transport in LPE-Grown HgCdTe layers. J. Electr. Mat. 39, 1023-1029 (2010). https://doi.org/10.1007/s11664-010-1086-7
  • [28] Du, G. et al. Characterizing multi-carrier devices with quantitative mobility spectrum analysis and variable field hall measurements. Jpn. J. Appl. Phys. 41, 1055-1058 (2002). https://doi.org/10.1143/JJAP.41.1055
  • [29] Svensson, S.P. et al. Background and interface electron populations in InAsSb Semicond. Sci. Technol. 30, 035018 (2015). https://doi.org/10.1088/0268-1242/30/3/035018
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b8c697e-3412-46d1-aa3f-fb6020c7fc06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.