PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The growth and characterisation of type I GaSb/AlSb superlattice with a thin GaSb layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of the characterisation of type I GaSb/AlSb superlattices (SLs) with a thin GaSb layer and varying thicknesses of an AlSb layer. Nextnano software was utilized to obtain spectral dependence of absorption and energy band structure. A superlattice (SL) with an energy bandgap of ~ 1.0 eV and reduced mismatch value was selected for experimental investigation. SLs with single (sample A) and double (sample B) AlSb barriers and a single AlSb layer (sample C) were fabricated using molecular beam epitaxy (MBE). Optical microscopy, high-resolution X-ray diffractometry, and photoluminescence were utilized for structural and optical characterisation. The presence of satellite and interference peaks in diffraction curves confirms the high crystal quality of superlattices. Photoluminescence signal associated with the superlattice was observed only for sample B and contained three low-intensity peaks: 1.03, 1.18, and 1.25 eV. The first peak was identified as the value of the energy bandgap of the SL. Other two peaks are related to optical transitions between defect states located at the interface between the SL and the top AlSb barrier. The time-dependent changes observed in the spectral characteristics are due to a modification of the SL/AlSb interface caused by the oxidation and hydroxylation of the AlSb layer.
Rocznik
Strony
art. no. e147912
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
autor
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • nextnano GmbH, Konrad-Zuse-Platz 8, 81829 München, Germany
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] Aspnes, D. E. & Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985-1009 (1983). https://doi.org/10.1103/PhysRevB.27.985.
  • [2] Chang, C. A., Takaoka, H., Chang, L. L. & Esaki, L. Molecular beam epitaxy of AlSb. Appl. Phys. Lett. 40, 983-985 (1982). https://doi.org/10.1063/1.92976.
  • [3] Takaoka, H., Chang, C.-A., Mendez, E. E., Chang, L. L. & Esaki, L. GaSb/AlSb/InAs multi-heterojunctions.Physica B+C 117, 741-743 (1983). https://doi.org/10.1016/0378-4363(83)90639-3.
  • [4] Mendez, E. E., Chang, C.-A., Takaoka, H., Chang, L. L. & Esaki, L. Optical properties of GaSb–AlSb superlattices. J. Vac. Sci. Technol. B 1, 152-154 (1983). https://doi.org/10.1116/1.582521.
  • [5] Alam, M. N., Matson, J. R., Sohr, P., Caldwell, J. D. & Law, S. Interface quality in GaSb/AlSb short period superlattices. J. Vac. Sci. Technol. A 39, 063406 (2021). https://doi.org/10.1116/6.0001290.
  • [6] Baranov, A. N. & Teissier, R. Quantum cascade lasers in the InAs/AlSb material system. IEEE J. Sel. Top. Quantum Electron. 21, 85-96 (2015). https://doi.org/10.1109/JSTQE.2015.2426412
  • [7] Ting, D. Z. et al. InAs/InAsSb superlattice infrared detectors. OptoElectron. Rev. 31, e144565 (2023). https://doi.org/10.24425/opelre.2023.144565.
  • [8] Rodriguez, J. B., Christol, P., Cerutti, L., Chevrier, F. & Joullié, A. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection. J. Cryst. Growth 274, 6-13 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.088.
  • [9] Müller, R. et al. Thermoelectrically-cooled InAs/GaSb type-II superlattice detectors as an alternative to HgCdTe in a real-time midinfrared backscattering spectroscopy system. Micromachines (Basel) 11, 1124 (2020). https://doi.org/10.3390/mi11121124.
  • [10] Gautam, N. et al. Band engineered HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices. Infrared Phys. Technol. 59, 72-77 (2013). https://doi.org/10.1016/j.infrared.2012.12.017.
  • [11] Delmas, M., Liang, B. L. & Huffaker, D. L. A comprehensive set of simulation tools to model and design high-performance Type-II InAs/GaSb superlattice infrared detectors. Proc. SPIE 10926, 29-39 (2019). https://doi.org/10.1117/12.2509480.
  • [12] Spitzer, J. et al. Influence of the interface composition of InAs/AlSb superlattices on their optical and structural properties. J. Appl. Phys. 77, 811-820 (1995). https://doi.org/10.1063/1.359004.
  • [13] Rygała, M. et al. Investigating the physics of higher-order optical transitions in InAs/GaSb superlattices. Phys. Rev. B 104, 085410 (2021). https://doi.org/10.1103/PhysRevB.104.085410.
  • [14] Wróbel, J. et al. Investigation of a near mid-gap trap energy level in mid-wavelength infrared InAs/GaSb type-II superlattices. Semicond. Sci. Technol. 30, 115004 (2015). https://doi.org/10.1088/0268-1242/30/11/115004.
  • [15] Griffiths, G., Mohammed, K., Subbana, S., Kroemer, H. & Merz, J. L. GaSb/AlSb multiquantum well structures: Molecular beam epitaxial growth and narrow‐well photoluminescence. Appl. Phys. Lett. 43, 1059-1061 (1983). https://doi.org/10.1063/1.94235.
  • [16] Birner, S. et al. nextnano: General Purpose 3-D Simulations. IEEE Trans. Electron. Devices 54, 2137-2142 (2007). https://doi.org/10.1109/TED.2007.902871.
  • [17] Trellakis, A. et al. The 3D nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron. 5, 285-289 (2006). https://doi.org/10.1007/s10825-006-0005-x.
  • [18] Xie, Q., Van Nostrand, J E., Jones, R. L., Sizelove, J. & Look, D. C. Electrical and optical properties of undoped GaSb grown by molecular beam epitaxy using cracked Sb1 and Sb2. J. Cryst. Growth 207, 255-265 (1999). https://doi.org/10.1016/S0022-0248(99)00379-6.
  • [19] Sankowska, I. et al. On the onset of strain relaxation in the Al0. 45Ga0. 55As/In Ga1 - As active region in quantum cascade laser structures. J. Appl. Crystallogr. 50, 1376-1381 (2017). https://doi.org/10.1107/S1600576717011815.
  • [20] Martyniuk, P. & Rogalski, A. HOT infrared photodetectors. OptoElectron. Rev. 21, 239-257 (2013). https://doi.org/10.2478/s11772-013-0090-x.
  • [21] Toyota, H. et al. Growth and characterization of GaSb/AlSb multiple quantum well structures on Si (111) and Si (001) substrates. Phys. Procedia 3, 1345-1350 (2010). https://doi.org/10.1016/j.phpro.2010.01.189.
  • [22] Delmas, M., Liang, B. L. & Huffaker, D. L. A comprehensive set of simulation tools to model and design high-performance Type-II InAs/GaSb superlattice infrared detectors. Proc. SPIE 10926, 29-39 (2019). https://doi.org/10.1117/12.2509480.
  • [23] Livneh, Y. et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices. Phys. Rev. B 86, 235311 (2012). https://doi.org/10.1103/PhysRevB.86.235311.
  • [24] Czuba, K., Ciura, Ł., Sankowska, I., Papis-Polakowska, E. & Jasik, A. The role of noise in specific detectivity of InAs/GaSb superlattice MWIR bariodes. Sensors 21, 7005 (2021). https://doi.org/10.3390/s21217005.
  • [25] Jakowetz, W., Rühle, W., Breuninger, K. & Pilkuhn, M. Luminescence and photoconductivity of undoped p‐GaSb. Phys. Status Solidi A, 12, 169-174 (1972). https://doi.org/10.1515/9783112480687-018.
  • [26] Lee, M., Nicholas, D. J., Singer, K. E. & Hamilton, B. A. Photoluminescence and Hall‐effect study of GaSb grown by molecular‐beam epitaxy. J. Appl. Phys. 59, 2895–2900 (1986). https://doi.org/10.1063/1.336948
  • [27] Lambkin, J. D. et al. Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P. Appl. Phys. Lett. 65, 73-75 (1994). https://doi.org/10.1063/1.113078.
  • [28] Seetoh, I. P., Soh, C. B., Fitzgerald, E. A. & Chua, S. J. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence. Appl. Phys. Lett. 102, 101112 (2013). https://doi.org/10.1063/1.4795793.
  • [29] Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118-125 (1974). https://doi.org/10.1016/S0022-0248(74)80055-2.
  • [30] Hao, R. et al. Molecular beam epitaxy of GaSb on GaAs substrates with AlSb/GaSb compound buffer layers. Thin Solid Films 519, 228-230 (2010). https://doi.org/10.1016/j.tsf.2010.08.001.
  • [31] Nakata, J., Shibata, T., Nanishi, Y. & Fujimoto, M. Suppression of AlSb oxidation with hydrocarbon passivation layer induced by MeV‐He+ irradiation. J. Appl. Phys. 76, 2078-2085 (1994). https://doi.org/10.1063/1.357617.
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The research was carried out as part of the “Implementation Doctorate” program of the Ministry of Education and Science in Poland, project no. DWD/6/0216/2022, and partially funded by the National Center for Research and Development (NCBR) from the project TECHMATSTRATEG-III/0038/2019-00.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b8a6ce6-d85b-451f-88aa-7891e55afc45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.