PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Friction Sound Properties of Natural-Fiber Woven Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie dźwięku ciernego tkanin z włókien naturalnych
Języki publikacji
EN
Abstrakty
EN
An innovative frictional sound automatic measuring system (FSAMS) was designed and used in this study to investigate the frictional sound generated when natural-fibre woven fabrics are rubbed together. Frictional sound measurements made using the automatic FSAMS were compared with those from a manual frictional sound measuring system (Manual FSAMS). The frictional sounds of four natural-fiber woven fabrics (i.e., cotton, linen, silk, and wool) were recorded; the Fast Fourier Transform method was used to convert time domain signals into frequency domain signals, and the maximum sound amplitude (MSA) and level pressure of the total sound (LPTS) of cotton, linen, silk, and wool were calculated. The results of a t test, analysis of variance, data reproducibility, and cluster spectrums measured from the four natural-fiber woven fabrics were compared for the two test equipment systems. The results from the t test and analysis of variance showed significant differences in the MSA and LPTS measured. Data reproducibility was superior to the automatic FSAMS compared with the manual FSAMS, and the cluster spectrums were more readily distinguishable.
PL
W celu zbadania szumu generowanego podczas tarcia o siebie tkanin z włókien naturalnych zaprojektowano i wykorzystano innowacyjny, automatyczny system pomiaru dźwięku ciernego (FSAMS). Porównano wyniki otrzymane za pomocą FSAMS z wynikami otrzymanymi przy użyciu systemu manualnego (Manual FSAMS). Do badania użyto czterech tkanin z włókien naturalnych: bawełny, lnu, jedwabiu i wełny. Przeprowadzono analizę statystyczną otrzymanych wyników. Analiza danych wykazała, że wartości szumu zmierzone przy użyciu FSAMS były bardziej stabilne i reprezentatywne, niż te otrzymane przy użyciu Manual FSAMS, ponieważ w przypadku systemu manualnego na wyniki pomiaru ma wpływ czynnik ludzki i hałasy otoczenia, które powodują duże błędy eksperymentalne.
Rocznik
Strony
34--42
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Creative Fashion Design, Nanya Institute of Technology, Taoyuan, Taiwan, R.O.C.
autor
  • Department of Mechanical Engineering, Nanya Institute of Technology, Taoyuan, Taiwan R. O. C.
autor
  • Inorganic/Organic Composite Materials Laboratory, Department of Fiber and Composite Materials, College of Engineering, Head, Textile and Materials Industry Research Institute, Feng Chia University, Taichung, Taiwan R. O. C.
autor
  • Department of Clothing Design and Technology, Manchester Metropolitan University, Manchester, United Kingdom
autor
  • Graduate School of Applied Technology, Nanya Institute of Technology, Taoyuan, Taiwan R. O. C.
Bibliografia
  • 1. Cho G, Kim C, Cho J and Ha J. Physiological Signal Analyses of Frictional Sound by Structural Parameters of Warp Knitted Fabrics. Fibers and Polymers 2005; 6, 1: 89-94.
  • 2. Choi K and Cho G. Development of Phase Change Materials Treated Thermostatic Fabric by Screen Printing Method. Research Journal of Textile and Apparel 2006; 10, 2: 19-24.
  • 3. Cho J, Moon J, Jeong K and Cho G. Application of PU-sealing into Cu/Ni Electro-less Plated Polyester Fabrics for E-Textiles. Fibers and Polymers 2007; 8, 3: 330-334.
  • 4. Rossing T D. The Science of Sound, 2nd edn, Addison-Wesley Publishing Company Inc., Massachusetts, 1990.
  • 5. Yi E and Cho G. Fabric Sound Classification by Autoregressive Parameters. The Journal of the Textile Institute 2000; 91, 4: 530-545.
  • 6. Yi E and Cho G. Fabric Sound Parameters and Their Relationship with Mechanical Properties. Textile Research Journal 2000; 70, 9: 828-836.
  • 7. Yi E, Cho G, Na Y and Casali J G. A Fabric Sound Evaluation System for AuditorySensible Textiles. Textile Research Journal 2002; 72, 7: 638-644.
  • 8. Kim C and Na Y. Effects of Basic Weave Differences in Silk Fabric and Yam Type Variations in Satin Weave on Sound Parameters. Textile Research Journal 2002; 72, 6: 555-560.
  • 9. Kim C, Cho G, Yoon H and Park S. Characteristics of Rustling Sounds Created by the Structure of Polyester Warp Knitted Fabrics. Textile Research Journal 2003; 73, 3: 685-691.
  • 10. Na Y, Lancaster J, Casali J and Cho G. Sound absorption coefficients of micro-fiber fabrics by reverberation room method. Textile Research Journal 2007; 77, 5: 330-335.
  • 11. Cho S, Kim C and Cho G. Fabric Sound depends on Fibers and Stitch Types of Weft Knitted Fabrics. Textile Research Journal 2009; 79, 8: 761-767.
  • 12. Cho S and Cho G. Minimizing Frictional Sound of PU-Nanoweb and PTFE Film Laminated Vapor Permeable Water Repellent Fabrics. Fibers and Polymers 2012; 13, 1:123-129.
  • 13. Park C and Cho G. Analysis of Acoustic Characteristics of Fabrics in Terms of Mechanical Properties. Fibers and Polymers 2012; 13, 3: 403-410.
  • 14. Wang B N, He M X, Zheng G B, Sue M C and Lin J H. Clamping device, No. CN202241000U, China patent, 2012.
  • 15. Wang B N, He M X. Material tension apparatus, No. CN202265271U, China patent, 2012.
  • 16. Wang B N and He M X. Frictional sound testing equipment, No. CN202256263U, China patent, 2012.
  • 17. Wang B N, He M X, Zheng G B, Sue M C and Lin J H. Clamping device, No. M426030, pp. 8851-8856, Taiwan Patent, 2012.
  • 18. Wang B N, He M X. Material tension apparatus, No. M421498, pp. 8797-8802, Taiwan Patent, 2012.
  • 19. Wang B N, He M X. Frictional sound testing equipment, No. M426115, pp. 9357-9366, Taiwan Patent, 2012.
  • 20. Foreman J E K. Sound Analysis and Noise Control, Van Nostrand-Reinhold, New York, NY, USA, 2012.
  • 21. Wang P N, Cheng K B. Dynamic Drape Property Evaluation of Natural-Fiber Woven Fabrics using a Novel Automatic Drape Measuring System. Textile Research Journal 2011; 81, 13: 1405-1415.
  • 22. Shyr T W, Wang P N, Lin J Y. Subjective and Objective Evaluation Methods to Determine the Peak-Trough Threshold of the Drape Fabric Node. Textile ResearchJournal 2009;79,13: 1223-1234.
  • 23. Lin J Y, Wang P N and Shyr T W. Comparing and Modeling the Dynamic Drape of Four Natural-fiber Fabrics. Textile Research Journal 2008, 78, 10: 911-921.
  • 24. Shyr T W, Wang P N, Cheng K B. A Comparison of the Key Parameters Affecting the Dynamic and Static Drape Coefficients of Natural-Fibre Woven Fabrics by a Newly Devised Dynamic Drape Automatic Measuring System. Fibres & Textiles in Eastern Europe 2007; 15, 3(62): 81-86.
  • 25. Tsai, K.H., Tsai, M. C., Wang, P. N., Shyr, T. W. New Approach to Directly Acquiring the Drape Contours of Various Fabrics. Fibres & Textiles in Eastern Europe 2009; 17(3), 54-59.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b891e19-2396-40dc-9c36-7f57146eed69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.