Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, collectors with two different designs as solar air heaters were examined. Both collectors have equal dimensions and panels with the same features are placed inside. A zigzag strip is placed within the cavities of the collector I panel. The inside of the cavities of the collector II panel is left empty. The thermal efficiency of the panel was observed by providing air flow from the bottom of both collectors. A good design is essential for an efficient collector. As a result of the studies carried out, according to the second law of thermodynamics, the efficiency of collector I, which has a zigzag inside the panel, is between 20.2% and 38.8%, whereas the efficiency of collector II, which is hollow inside the panel, varies between 17% and 32.2%.
Czasopismo
Rocznik
Tom
Strony
215--222
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
Bibliografia
- [1] Abene, A., Dubois, V., Le Ray, M., & Ouagued, A. (2004). Study of a solar air flat plate collector use of obstacles and application for the drying of grape. Journal of Food Engineering, 65(1), 15– 22. doi: 10.1016/j.jfoodeng.2003.11.002
- [2] Zıma, W., & Dzierwa, P. (2010). Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes. Archives of Thermodynamics, 31(2), 45–62. doi: 10.2478/v10173-010-0008-7
- [3] Krawczyk, P. (2013). Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility. Archives of Thermodynamics, 34(4), 23–34. doi: 10.2478/aoter-2013-0027
- [4] Khatri, R., Goswami, S., Anas, M., Sharma, S., Agarwal, S., & Aggarwal, S. (2020). Performance evaluation of an arched plate solar air heater with porous aluminum wire mesh cylindrical fins. Energy Reports, 6(9), 627–633. doi: 10.1016/j.egyr.2020.11.177
- [5] El-Khawajah, M.F. Aldabbagh, L.B.Y., & Egelioglu, F. (2011). The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Solar Energy, 85(7), 1479–1487. doi: 10.1016/j.solener.2011.04.004
- [6] Sharma, S., Kumar, D.R., & Kulkarni, K. (2021). Computational and experimental assessment of solar air heater roughened with six different baffles. Case Studies in Thermal Engineering, 27, 101350. doi:10.1016/j.csite.2021.101350
- [7] Petela, R. (2003). Exergy of undiluted thermal radiation. Solar Energy, 74(6), 469–488. doi: 10.1016/S0038-092X(03)00226-3
- [8] Sivakumar, V., & Sundaram, G.E., (2016). MATLAB modelling and examination of the effect of heat capacity of basin and glass cover on performance of solar still by thermal models. International Journal of Ambient Energy, 39(1), 1–10. doi: 10.1080/01430750.2016.1222956
- [9] Farahat, S., Ajam, H., & Sarhaddi, F. (2004). Method and basis of flat plate collector optimization with exergy concept. Proc-eedings of First Iranian Conference on Ecoenergy, Urmia, Iran.
- [10] Çomakli, Ö., & Yüksel, F. (1994). Experimental investigation of the exergetic efficiency of air heating flat-plate solar collector with distorted plates. Energy Conversion and Management, 35(2), 121–126. doi: 10.1016/0196-8904(94)90072-8
- [11] Karsli, S. (2007). Performance analysis of new-design solar air collectors for drying applications. Renewable Energy, 32(10) 1645–1660. doi: 10.1016/j.renene.2006.08.005
- [12] Altfeld, K., Leiner, W., & Fiebig, M. (1988). Second law optimization of flat-plate solar air heaters Part I: The concept of net exergy flow and the modeling of solar air heaters. Solar Energy, 41(2), 127–32. doi: 10.1016/0038-092X(88)90128-4
- [13] Altfeld, K., Leiner, W., & Fiebig, M. (1988). Second law optimization of flat-plate solar air heaters Part 2: Results of optimization and analysis of sensibility to variations of operating conditions. Solar Energy, 41(4), 309–317. doi: 10.1016/0038-092X(88)90026-6
- [14] Gupta, M.K., & Kaushik, S.C. (2008). Exergetic performance evaluation and parametric studies of solar air heater. Energy, 33(11), 1691–702. doi: 10.1016/j.energy.2008.05.010
- [15] Dincer, I., & Rosen, M.A. (2008). Thermal Energy Storage: Systems and Applications. Wiley & Sons, New York.
- [16] Esen, H. (2008). Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment, 43(6), 1046–1054. doi: 10.1016/j.buildenv.2007.02.016
- [17] Bejan, A. (1988). Advanced Engineering Thermodynamics (2nd ed.) (pp.133–137 & 462-465). Wiley & Sons.
- [18] Wark Jr., K. (1997). Advanced Thermodynamics for Engineers. McGraw-Hill, New York.
- [19] Ucar, A., & Inalli, M. (2006). Thermal and exergy analysis of solar air collectors with passive augmentation techniques. Inter-national Communications in Heat and Mass Transfer, 33(10), 1281–1290. doi: 10.1016/j.icheatmasstransfer.2006.08.006
- [20] Akpinar, E.K., & Kocyigit, F. (2010). Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy, 87(11), 3438–3450 doi: 10.1016/j.apenergy.2010.05.017
- [21] Sivakumar, V., Sundaram, E.G., & Sakthivel, M. (2016). Investigation on the effects of heat capacity on the theoretical analysis of single slope passive solar still. Desalinational and Water Treatment, 57(20), 9190–9202. doi: 10.1080/19443994. 2015.1026284
- [22] Kaushik, S.C., Abhyankar, Y.P., Bose, S., & Mohan, S. (2001). Exergoeconomic evaluation of a solar thermal power plant. International Journal of Solar Energy, 21(4), 293–314. doi: 10.1080/01425910108914377
- [23] Yousef, M., Hassan, H., Ahmed, M., & Ookawaraa, S. (2017). Energy and exergy analysis of single slope passive solar still under Egyptian climate conditions. Energy Procedia, 141, 18–23. doi: 10.1016/j.egypro.2017.11.005
- [24] Torres-Reyes, E., Navarete-Gonzales, J.J., Zaleta-Aguilar, A., & Cervantes-De Gurtari, J.G. (2001). Exergy analysis of irreversible flat-plate solar collectors. ECOS ’01, The International Congress on Efficiency, Costs, Optimization, Simulation and environmental aspects of energy systems and processes, July 4–6, Istanbul, Turkey.
- [25] Cengel, Y.A., & Boles, M.A. (2006). Thermodynamics: An Engineering Approach (5th ed.). McGraw-Hill, New York.
- [26] Karim, M.A., & Hawlader, M.N.A. (2004). Development of solar air collectors for drying applications. Energy Conversion and Management, 45(3), 329–344. doi: 10.1016/S0196-8904(03)00158-4
- [27] http://www.ansys.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b814ff6-ef30-4ba4-809d-de71b4574b70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.