PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DAQ-based measurements and study of supercapacitor frequency characteristics

Treść / Zawartość
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (15-16.04.2019 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
The paper concerns the beginning of a modeling study for supercapacitors. A data acquisition (DAQ) based system is presented, where an automated procedure has been implemented for the measurement of frequency characteristics. For a typical range of the supply voltage the characteristics are obtained. A model basing on fractional calculus is recalled and parameters for the model are obtained. The frequency characteristics of the model are compared with those obtained from measurements. Later the tested supercapacitor has its characteristics taken for various amplitudes and offsets of the source voltage. A few remarks are given for a possible expansion of the model when nonlinearity should be considered.
Rocznik
Tom
Strony
203--213
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Silesian University of Technology
  • Silesian University of Technology
Bibliografia
  • [1] González A., Goikolea E., Barrena J.A., Mysyk R., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, Volume 58, 2016, pp. 1189–1206.
  • [2] Chu A., Braatz P., Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization, Volume 112, Issue 1, pp. 236–246.
  • [2] Pinkiewicz I., Kaźmierski M., Olech W., Malinowski J., Sopocki R., On-site Processing of Insulation System of Large Power Transformers and Hot-spot Computer Determination, CIGRE, Session 2004, A2-208.
  • [3] Kumar M.R., Ghosh S., Das S., Charge-discharge energy efficiency analysis of ultracapacitor with fractional-order dynamics using hybrid optimization and its experimental validation, International Journal of Electronics and Communications (AEÜ), Volume 78, 2017, pp. 274–280.
  • [4] Zhang L., Hu X., Wang Z., Sun F., Dorrell D.G., Fractional-order modeling and State-of-Charge estimation for ultracapacitors, Journal of Power Sources, Volume 314, 2016, pp. 28–34.
  • [5] de Oliveira E.C., Machado J.A.T., A Review of Definitions for Fractional Derivatives and Integral, Mathematical Problems in Engineering, Volume 2014, ID 238459, 6 pages, 2014.
  • [6] Caputo M., Linear models of dissipation whose Q is almost frequency independent – II, Geophysical Journal International, Volume 13, Number 5, 1967, pp. 529–539.
  • [7] Allagui A., Freeborn T.J., Elwakil A.S., Fouda M.E., Maundy B.J., Radwan A.G., Said Z., Abdelkareem M.A., Review of fractional-order electrical characterization of supercapacitors, Journal of Power Sources 400, 2018, pp. 457–467.
  • [8] Freeborn T.J., Maundy B., Elwakil A.S., Fractional-order models of supercapacitors, batteries and fuel cells: a survey, Mater Renew Sustain Energy, 2015, 4:9, 7 pages.
  • [9] Mitkowski W., Skruch P., Fractional-order models of the supercapacitors in the form of RC ladder networks, Bull. Pol. Ac.: Tech., Volume 61, Number 3, 2013, pp. 581–587.
  • [10] Majka Ł., Applying a fractional coil model for power system ferroresonance analysis, Bull. Pol. Ac.: Tech., Volume 66, Number 4, pp. 467–474.
  • [11] Majka Ł., Fractional derivative approach in modeling of a nonlinear coil for ferroresonance analyses, Non-integer order calculus and its applications, Springer, 2019, pp. 135–147.
  • [12] Schäfer I., Krüger K., Modelling of lossy coils using fractional derivatives, Journal of Physics D: Applied Physics, Volume 41, Number 4, 2008, pp. 1–8.
  • [13] Sowa M., DAQ-based measurements for ferromagnetic coil modeling using fractional derivatives, 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnoujscie, 2018, pp. 91–95.
  • [14] Chen Z., Augustyn V., Wen J., Zhang Y., Shen M., Dunn B., Lu Y., High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites, Advanced Materials, Volume 23, Number 6, 2011, pp. 791–795.
  • [15] Hu A.P., You Y.W., Chen F.-Y.B., McCormick D., Budgett D.M., Wireless Power Supply for ICP Devices With Hybrid Supercapacitor and Battery Storage, IEEE Journal of Emerging and Selected Topics in Power Electronics, Volume 4, Number 1, March 2016, pp. 273–279.
  • [16] https://www.murata.com/support/faqs/products/capacitor/edlc/conf/0002.
  • [17] http://www.cooperindustries.com/content/dam/public/bussmann/Electronics/.Resources/product-datasheets/bus-elx-ds-10510-xlr-supercapacitor-module.pdf.
  • [18] http://www.gwinstek.com/en-global/products/Signal_Sources/Arbitrary_Function_Generators/AFG-2100_AFG-2000.
  • [19] http://www.ni.com/pl-pl/support/model.ni-9239.html.
  • [20] http://www.ni.com/pl-pl/support/model.cdaq-9174.html.
  • [21] http://www.ni.com/product-documentation/54391/en/.
  • [22] http://www.bigcap.net/en/article/389.html.
  • [23] Sowa M., A Harmonic Balance Methodology for Circuits with Fractional and Nonlinear Elements, Circuits, Systems and Signal Processing, Volume 37, Number 11, 2018, pp. 4695–4727.
  • [24] http://accord-framework.net/index.html.
  • [25] Powell M.J.D., A view of algorithms for optimization without derivatives. Cambridge University Technical Report DAMTP 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Błędna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b763f94-a412-48b1-815a-3fa4e8b38993
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.