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Abstract—Fractional-order calculus offers flexible computa-
tional possibilities that can be applied to control design thereby
improving industrial control loop performance. However, before
theoretical results can be carried over to an industrial setting
it is important to study the effects of fractional-order control
by means of laboratory experiments. In this paper, we study
the practical aspects of tuning and implementing a fractional-
order PD controller for position control of a laboratory modular
servo system using FOMCON (“Fractional-order Modeling and
Control”) toolbox for MATLAB. We provide an overview of the
tools used to model, analyze, and design the control system. The
procedure of tuning and implementation of a suitable digital
fractional-order controller is described. The results of the real-
time experiments confirm the effectiveness of used methods.

Index Terms—fractional calculus, position servo, pid controller,
digital control, control optimization

I. INTRODUCTION

FRACTIONAL-ORDER calculus is the generalization of

conventional calculus, where the order α of integration

or differentiation is not restricted to integer numbers [1]. This

generalization offers interesting modeling possibilities. The

number of applications where fractional-order calculus is used

has been growing steadily in the last years [2].

Non-integer calculus is actively used in the field of control

system design [3], [4]. Novel modeling opportunities allow to

design efficient linear and nonlinear control strategies [2]. It is

a well known fact, that PID-type controllers are ubiquitous in

the industry [5], [6]. However, a conventional PID controller

is inferior to a fractional-order PID controller due to extended

tuning flexibility of the latter. This was experimentally con-

firmed in, e.g., [7], [8], [9].

Computer Aided Control System Design (CACSD) tools

are readily available to assist engineers in the task of de-

veloping suitable controllers for particular plants. Notable

examples include CRONE [10] and Ninteger [11] toolboxes

for MATLAB/Simulink software. The FOMCON (“Fractional-

order Modeling and Control”) toolbox [12], [13] was recently

developed to further expand the existing toolset as well as to

provide new features.

In our previous work [14], [15], we focused primarily on

the problem of extending an existing implementation technique

[16], [17] to achieve a frequency bounded approximation of a

fractional-order lead compensator similar to, e.g., Oustaloup’s

method [4], [10], [18], and provided an example where such
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a controller was obtained for a position servo model. In this

work we complement these results by summarizing the design

and implementation methods for an equivalent controller,

namely a fractional-order PDμ controller, using the FOMCON

toolbox control design module. Thereby, in addition, we ex-

tend the results in [19], [20]. We also confirm the effectiveness

of these methods experimentally using a modular servo system

provided by INTECO [21].

The paper is organized as follows. In Section II the reader is

introduced to fractional-order control, fractional-order system

implementation method, and the corresponding software tools

used to design and realize a digital fractional-order controller.

The description of the controlled servo system is provided in

Section III. In Section IV we provide the steps necessary to

design and realize a suitable controller for the position servo

system. An overview of the experimental platform and the

results of real-time closed loop control are given in Section V.

Some items for discussion are outlined in Section VI. Finally,

conclusions are drawn in Section VII.

II. FRACTIONAL-ORDER CONTROL

A. Introduction to Fractional-order Control

In the heart of fractional-order modeling lies the generalized

non-integer order fundamental operator

aD
α
t =

⎧⎪⎨
⎪⎩
dα/dtα α > 0,

1 α = 0,´ t
a
(dτ)−α α < 0,

(1)

where a and t denote the limits of the operation. The case

α ∈ Z corresponds to conventional differentiation or integra-

tion. There exist several definitions of the generalized operator.

Next, we provide the Grünwald-Letnikov definition [2], [3]:

aD
α
t f(t) = lim

h→0

1

hα

k∑
j=0

(−1)j
(
α

j

)
f(t− jh), (2)

where a = 0, t = kh, k is the number of computation steps

and h is step size. We assume zero initial conditions and thus

the Laplace transform of the fractional α-order derivative isˆ ∞
0

e−st
0D

α
t f(t)dt = sαF (s), (3)

where α ∈ R
+ and s = σ + jω is the Laplace transform

variable.

The parallel form of the fractional PIλDμ controller is given

in the following equation:

C(s) = Kp +
Ki

sλ
+Kd · sμ. (4)



In the frequency domain this controller offers more tuning flex-

ibility. In general, by varying the order γ of a fractional-order

integrator (differentiator) a constant decrement (increment) in

the slope of the magnitude curve that equals 20γ dB/dec can

be achieved, as well as a constant delay in the phase plot

πγ/2 rad, where the values depend on the sign of γ. The
effects of control actions in the time domain corresponding to

a fractional-order integrator and differentiator are illustrated in

Fig. 1 and Fig. 2, respectively.
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Fig. 1. Fractional integrator s−γ control actions
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Fig. 2. Fractional differentiator sγ control actions

Various fractional-order PIλDμ controller tuning methods

have been proposed to date [9], [22], [23], [24], [25]. One

possible general approach is based on constrained optimization

subject to particular control system design specifications and

has been investigated in [26].

Additionally, consider the transfer function corresponding

to a fractional-order lead (lag) compensator:

G(s) = K ·
(
bs+ 1

as+ 1

)α

, (5)

where K is the static gain, |α| < 1 is the non-integer power.

Coefficients b and a are related to zero frequency ωz = 1/b

and pole frequency ωh = 1/a for α > 0. Generally, this
transfer function corresponds to a frequency bounded non-

integer differentiator (integrator) [15]. Therefore, the integral

and differential components of the FOPID controller in (4)

may be implemented using (5).

B. Fractional-order System Implementation

In this work we turn our attention to the Oustaloup ap-

proximation method which is frequently used for practical

implementations of fractional-order systems and controllers

[2], [3], [18]. A revised version of this method was proposed

in [27]. We restrict our attention to the original approximation

algorithm. In order to approximate a fractional differentiator

of order α or a fractional integrator of order (−α) one can

use the following set of equations:

sα ≈ K
N∏

k=1

s+ ω′k
s+ ωk

, (6)

where

ω′k = ωb · ω(2k−1−α)/N
u , (7)

ωk = ωb · ω(2k−1+α)/N
u , (8)

K = ωα
h , ωu =

√
ωh/ωb, (9)

and N is the order of approximation in the frequency range

(ωb;ωh). The order of the resulting approximation is 2N +1.
Taking a higher order N generally results in a more accurate

approximation, though equations relating the parameters in

(6)–(9) to N exist as well and may be found in [18].

A suitable discretization method can be used to obtain a

discrete-time approximation from the continuous one in (6).

One possible method would be that of zero-pole matching

equivalents, where direct mapping of continuous zeros and

poles to discrete-time is done by means of the relation

z = esTs , (10)

where Ts is the desired sampling interval. The gain of the

resulting discrete-time system H(z) must be corrected by a

proper factor. This implementation method has been success-

fully used in our previous work [28], [29]. We remark, that

for the synthesis of continuous zeros and poles in (6) with the

intent to obtain a discrete-time approximation the transitional

frequency ωh may be chosen such that

ωh � 2

Ts
. (11)

After acquiring a set of discrete-time zeros and poles by

means of (10), the fractional-order controller may be imple-

mented in form of a IIR filter represented by a discrete-time

transfer function H(z−1). In general, one has two choices:

1) Implement each fractional-order component approxima-

tion of the controller in (4) separately as Hλ(z−1) and
Hμ(z−1); this method offers greater flexibility, since

the components may be reused in the digital signal

processing chain, but requires more memory and is

generally more computationally expensive;

2) Compute a single LTI object approximating the whole

controller; this method is suitable when there is a need



for a static description of a fractional-order controller,

e.g., for a given control task.

In this particular work we choose the second option, that is

we seek a description of the controller in the form

H(z−1) = K
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz−m

a0 + a1z−1 + a2z−2 + · · ·+ anz−n
. (12)

For practical reasons, the equivalent IIR filter should be

comprised of second-order sections, since this allows to im-

prove computational stability, especially when the target signal

digital processing hardware has limited floating-point type

resolution and operation support [28], [30]. Thus, the discrete-

time controller must be transformed to yield

H(z−1) = b0

N∏
k=1

1 + b1kz
−1 + b2kz

−2

1 + a1kz−1 + a2kz−2
. (13)

The form also easily lends itself to stability analysis re-

gardless of the method used to generate the coefficients of

the second-order sections. Here we assume that computational

stability is guaranteed with a specified precision. Then, in

order to determine whether a section is stable or not, we

consider its discrete-time pole polynomial

p(z−1) = 1 + d1z
−1 + d2z

−2. (14)

A single section in (13) is stable [31], if the following

conditions, derived from the classical case of discrete-time

system stability analysis, are met in the (d1, d2)-plane (see

Fig. 3 for a visual reference):

|d1| < 1 + d2, |d2| < 1. (15)

Note, that in case of the method in (6) for any non-

integer order α ∈ R, |α| < 1, the obtained approximation

is always stable [18] and after the subsequent discretization

procedure the rule (15) should also be satisfied for every

section comprising the filter in (13).

Fig. 3. The stability triangle

C. Fractional-order Controller Design Tools
The tools in the identification, control design, and imple-

mentation modules pertaining to the present work are briefly

described next. The corresponding MATLAB calling sequence

is provided.

• Fractional-order transfer function model identification

tool, calling sequence: fotfid. The graphical user in-

terface of the tool is presented in Fig. 4. Since fractional-

order calculus is viewed as a generalization of the usual

calculus operators in this context, the tool can also be

used to determine the parameters of classical, integer-

order systems. In particular, we are interested in identi-

fying process models, a feature which the present tool

fully supports.

• Fractional PID controller design front-end, calling se-

quence: fpid. A negative unity feedback connection is

assumed, i.e.

Gc(s) =
C(s)G(s)

1 + C(s)G(s)
,

where C(s) is the fractional-order PID controller and

G(s) is the linear plant to be controlled. The tool has

further links to the optimization and implementation

tools.

• Optimization tool, calling sequence: fpid_optim. The
tool has been updated substantially since [12], the new

graphical front-end illustrating the added features is given

in Fig. 5. A thorough description of the tool is provided

in [26]. One of the most notable features is the possibility

to use Simulink for simulation of nonlinear effects, such

as actuator saturation, and/or nonlinear plants. In this

regard, the nonlinear simulation option aims to fill the gap

between theoretical controller design results and practical

control applications.

• Implementation tools, calling sequence: impid,
d2sos(). The former allows to choose suitable

controller parameters for a discrete approximation, while

the latter may be used to directly obtain C language style

IIR filter second-order arrays from the approximated

discrete controller.

Fig. 4. Graphical user interface of the fractional-order transfer function model
identification tool



Fig. 5. Graphical user interface of the fractional-order PID controller
optimization tool

III. DESCRIPTION OF THE SERVO SYSTEM

In this work we use the modular servo system provided

by INTECO [21]. This laboratory system is reconfigurable

and can be used for a variety of control experiments. We

consider the particular configuration depicted in Fig. 6. The

plant consists of the following modules: tachogenerator, which

is used to measure the rotational speed of the DC motor; inertia

load, backlash, incremental encoder, and gearbox with output

disk. Data acquisition and real-time experiments are done

using a specific PCI board, which connects to the servo system

power interface and also collects data from the tachogenerator,

incremental encoder and reference potentiometer (the latter is

not shown in the figure).

Fig. 6. Configuration of the laboratory servo system

The mathematical model of the servo system is based on

that of the DC motor. The first-order inertial system, where

static and dry kinetic friction and saturation are neglected, is

described by the equation

Tsω̇(t) = −ω(t) +Ksmv(t), (16)

where Ts is the time constant of the motor, ω(t) is the angular
velocity of the rotor, Ksm is the motor gain and v(t) is the

input voltage. The input voltage in case of this laboratory plant

is normalized and is such that

u(t) = v(t)/vmax, |u(t)| � 1. (17)

Also let Ks = Ksm · vmax. Then, the corresponding velocity

transfer function is given by

Gv(s) =
Ks

Tss+ 1
, (18)

and the angle transfer function is obtained by adding an

integrator

Ga(s) =
Ks

s(Tss+ 1)
. (19)

The backlash, found in many real mechanical systems [32],

introduces play into the system. In this plant the output dead-

zone of the backlash is close to 2π. This nonlinearity has to

be specifically considered when designing a suitable controller

for the system—the procedure which we will investigate in the

next section.

Finally, the apparent dead-zone of the motor under the

voltage input has been identified as ud = (−0.05, 0.05).

IV. TUNING AND IMPLEMENTATION OF THE CONTROLLER

In order to design the controller using the tools described in

Section II we first need to obtain the model of the plant given

by (19). This is possible by first identifying the model in (18)

in the time domain from a step experiment, and then simply

adding an integrator to arrive at the desired model. Using the

time-domain identification tool, described in Section II, we

obtain the following integer-order process model:

G(s) =
192.1638

s(1.001s+ 1)
. (20)

In what follows, this transfer function serves as the basis for

controller design using the optimization tool.

For a model of the form (19) it is natural to assume that

a lead compensator may be necessary for establishing the re-

quired closed-loop performance. Recall, that a fractional-order

lead compensator corresponds, in principle, to a frequency-

bounded approximation of a PDμ controller, therefore our task

is to establish an appropriate set of parameters (Kp,Kd, μ).
The generic parameters for the parallel form of this con-

troller provided by INTECO are Kp = 0.1,Kd = 0.01. We

shall use these parameters as the initial ones for the design

of a suitable fractional-order PD controller, which we shall

accomplish by means of constrained optimization. Following

the controller design strategy applied in [26], [28], with design

specifications of 1% set-point tracking accuracy and a mini-

mum phase margin ϕm = 60◦, we proceed to construct the

nonlinear Simulink model for time-domain simulation of the

control system. Additionally, input disturbance is considered,

as well as the motor control dead-zone and the backlash

component. The resulting model is presented in Fig. 7.

Other optimization parameters are set in the following

way: performance metric is IAE (integral absolute error),



Out2

2

Out1

1

r

50

Scope

Saturation
Plant LTI

fpid_optimize_lti

Impulse u=0.25
(30s to 30.5s)

Out1

Fractional PID controller

e u

Dead Zone Backlash
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the linear model of the plant is used to compute the con-

straints in the frequency domain and the approximation is

obtained by means of the Oustaloup filter with parameters

ω ∈ [0.0001, 10000], N = 5. Actuator saturation is considered

and is such, that u(t) ∈ [−1, 1]. Simulation stop time is 60
seconds. Two optimization steps are considered:

• Fixing μ = 1 we obtain optimized integer-order PD

controller parameters Kp and Kd.

• Fixing the gains at the obtained values, we search for an

optimal order μ.

This method minimizes the number of optimization variables

thereby improving the optimization speed. The results of

optimization are such, that after 100 iterations the gains of

the PD controller have been found as Kp = 0.055979 and

Kd = 0.025189. After fixing the gains and setting the initial

value of μ to 0.5, the optimized PDμ controller is obtained

with μ = 0.88717. Phase margin of the open loop control

system is ϕm = 65.3◦.
The fractional-order PDμ controller has been found to ex-

hibit superior performance than the initially obtained integer-

order PD controller, especially in the presence of aforemen-

tioned nonlinearities. The comparison of simulated transient

responses of the servo control system with initial generic

integer-order PD controller and the optimized fractional PDμ

controller is given in Fig. 8.

The accuracy requirement as well as the phase margin

specifications have been satisfied. In the frequency domain

the approximation of the PDμ controller corresponds to the

fractional lead compensator in (5).

Finally, we can obtain a digital implementation of this

controller. The target hardware is a simple 8 bit Atmel AVR

ATmega8A based microcontroller prototype. The microcon-

troller connects to external 12 bit analog-to-digital and digital-

to-analog converters by means of the I2C interface. Basic

signal conditioning circuits are employed.

Continuous Oustaloup filter approximation parameters are

the same as were used during controller optimization. The

’matched’ method in 10 is used to obtain a discrete-time

approximation of the controller with sampling interval Ts =
0.01. The d2sos() function is used to directly obtain the

IIR filter second-order section coefficients, provided next:
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b = {+1.0000000000,−0.9647855878,+0.0000000000} ,
{+1.0000000000,−0.0209224276,+0.0000000000} ,
{+1.0000000000,−1.3493207288,+0.4180066451} ,
{+1.0000000000,−1.9807306143,+0.9807890156} ,
{+1.0000000000,−1.9991305017,+0.9991306026} ,
{+1.0000000000,−1.9999692428,+0.9999692429} ,

a = {+1.0000000000,−0.0000000000,+0.0000000000} ,
{+1.0000000000,−0.0409802515,+0.0000000016} ,
{+1.0000000000,−1.4434599048,+0.4912545169} ,
{+1.0000000000,−1.9752697983,+0.9753515564} ,
{+1.0000000000,−1.9991239831,+0.9991240851} ,
{+1.0000000000,−1.9999692318,+0.9999692319} ,

b0 = 1.5336084022.



−40

−30

−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

30

60

90

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (rad/s)

Ideal PDμ controller

Approximated PDμ controller

Fig. 9. Frequency domain characteristics of an ideal PDμcontroller vs. its
frequency-bounded approximation

These IIR filter coefficient arrays are hard-coded into the

microcontroller memory. We remark, that the presented coeffi-

cient resolution will not be utilized in full by a single-precision

floating number format used in DSP operations running on the

microcontroller.

In the next section we describe the experimental platform

and provide the results of real-time control experiments that

verify the proposed implementation.

V. EXPERIMENTAL RESULTS

A. Description of the Experimental Platform

In order to validate the performance of the digital controller,

the configuration depicted in Fig. 10 is used. Apart from the

servo system, we use an updated version of the serial com-

munication based DAQ board, discussed in [14] in connection

with controller prototyping. It offers two input and two output

channels with 12 bit sample resolution and 2.5kSPS theoretical

full-duplex real-time sampling rates on both channels with at

most a single sample delay. Unfortunately, said performance

will vary depending on the hardware configuration of the

personal computer used.

Fig. 10. Real-time closed loop control evaluation platform

For the experiment it is assumed, that the controller receives

the error encoded in a voltage signal of amplitude 0 . . . 5V.
Virtual ground with +2.5V reference is used to encode the

negative error and control signal. The values are scaled ac-

cordingly. The voltage supply is reasonably well filtered.

The general Simulink diagram for experiments with the ex-

ternal controller is given in Fig. 11. In case of all experiments,

the PC is running MATLAB/Simulink and specific Real-Time

Windows Target drivers for the serial DAQ board and the

modular servo system.

B. Real-time Control Results

Three experiments are considered:

• Evaluation of performance of the controller implemented

in Simulink;

• Evaluation of performance of the external digital con-

troller;

• Evaluation of external controller set-point tracking.

The first two experiments are grouped so that a comparison

can be made. Additionally, a similar experiment is conducted

with the initial integer-order PD controller for reference. The

third experiment is done for the external controller. Set-point

changing in this case is done by means of the potentiometer

disk of the servo system.

The results of the first set of experiments are presented in

Fig. 12. The control system responses obtained from using the

fractional PDμ controller implemented as a Simulink block

and the external controller match up. A small discrepancy is

caused by a voltage offset error. The control law exhibits limit

cycles due to, one hand, quantization [33] caused by finite

word length of the A/D and D/A converters, and on the other

hand by measurement noise. Some noise is naturally present

in the analog circuit. However, the amplitude of these limit

cycles falls inside the dead zone of the control signal, so they

do not have any major effect on the control system.

The result of manual set-point change experiment with

the external controller is presented in Fig. 13. The experi-

ment confirms the expected controller performance. We can

conclude, that apart from small discrepancies, the hardware

implementation of the PDμ controller is working correctly

within the desired performance specifications.

VI. DISCUSSION

The methods of digital controller design and implementation

provided in this paper were successfully verified by real-time

control loop experiments. During this process some issues

were identified.

• Limit cycles exist in the control law of the hardware

controller due to noise and quantization effects. However,

in an industrial application these will be minimized if

a suitable data acquisition configuration tailored to the

specific task is used.

• While the control system is capable of tracking the set

angle with 1% accuracy, in a particular position tracking

situation a more strict accuracy requirement may be

demanded. Proper calibration must ensure the absence

of offset errors.
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VII. CONCLUSIONS

In this paper, we presented a method for design and im-

plementation of a digital controller for a position servo using

tools available in the FOMCON toolbox for MATLAB. The

digital controller was implemented in form of a IIR filter

running on an Atmel AVR microprocessor. The results of

controller design were verified during real-time closed loop

experiments. Some problems were identified and possible

solutions provided. Future work should be devoted to further

improving the controller design process, e.g. implementation

of auto-tuning directly on the embedded device.
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