PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Collaborative beamforming optimization using imperialist competitive algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wspólna optymalizacja kształtowania wiązki przy użyciu imperialistycznego algorytmu konkurencyjnego
Języki publikacji
EN
Abstrakty
EN
This study focuses on optimizing the spacing between element of virtual non-linear antenna array (LAA) using Imperialist Competitive Algorithm (ICA) to form collaborative beamforming (CB) in wireless sensor network (WSN). The spacing between element is optimized to produce a beampattern with minimize sidelobe level (SLL) and narrow First Null Beamwidth (FNBW). The results are compared with Backtracking Search Algorithm (BSA) and conventional LAA (ULA) to study the superiority of ICA in optimizing beampattern. The results show that ICA able to reduce maximum SLL until 25.9% and 23% as compared to ULA and BSA respectively.
PL
Niniejsze badanie koncentruje się na optymalizacji odstępów między elementami wirtualnej nieliniowej macierzy antenowej (LAA) przy użyciu imperialistycznego algorytmu konkurencyjnego (ICA) w celu utworzenia wspólnego kształtowania wiązki (CB) w bezprzewodowej sieci czujników (WSN). Odstęp między elementami jest zoptymalizowany w celu uzyskania wzoru wiązki z minimalnym poziomem płatków bocznych (SLL) i wąską pierwszą zerową szerokością wiązki (FNBW). Wyniki są porównywane z algorytmem Backtracking Search Algorithm (BSA) i konwencjonalnym LAA (ULA) w celu zbadania wyższości ICA w optymalizacji wzorca wiązki. Wyniki pokazują, że ICA jest w stanie zredukować maksymalny SLL do 25,9% i 23% w porównaniu odpowiednio do ULA i BSA.
Rocznik
Strony
124--129
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor, Malaysia
  • Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor, Malaysia
  • IRIMAS UR 7499, University of Haute Alsace, Mulhouse, France
  • Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor, Malaysia
  • Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor, Malaysia
Bibliografia
  • [1] Liang S., Fang Z., Sun G., Liu Y., Qu G., Jayaprakasam S., Zhang Y., A Joint Optimization Approach for Distributed Collaborative Beamforming in Mobile Wireless Sensor Networks, Ad Hoc Networks, 106 (2020), 102216, doi: 10.1016/J.ADHOC.2020.102216.
  • [2] Macharia R., Langat K., Kihato P., Collaborative Beamforming in Wireless Sensor Networks Using a Novel Particle Swarm Optimization Algorithm Variant, SSRN Electronic Journal, 2021, doi: 10.2139/ssrn.3906490.
  • [3] Sun G., Liu Y., Liang S., Chen Z., Wang A., Ju Q., Zhang Y., A Sidelobe and Energy Optimization Array Node Selection Algorithm for Collaborative Beamforming in Wireless Sensor Networks, IEEE Access, 6 (2018), 2515–2530, doi: 10.1109/ACCESS.2017.2783969.
  • [4] Liang S., Fang Z., Sun G., Liu Y., Zhao X., Qu G., Zhang Y., Leung V.C.M., JSSA: Joint Sidelobe Suppression Approach for Collaborative Beamforming in Wireless Sensor Networks, IEEE Access, 7 (2019), 151803–151817, doi: 10.1109/ACCESS.2019.2948091.
  • [5] Sun G., Zhao X., Liang S., Liu Y., Zhang Y., Leung V.C.M., A Hybrid Optimization Approach for Suppressing Sidelobe Level and Reducing Transmission Power in Collaborative Beamforming, 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), (Sep. 2019), 1–6. doi: 10.1109/VTCFall.2019.8891325.
  • [6] Chen J.-C., Wen C.-K., Wong K.-K., An Efficient Sensor-Node Selection Algorithm for Sidelobe Control in Collaborative Beamforming, IEEE Trans Veh Technol, 65 (2016), No. 8, 5984–5994, doi: 10.1109/TVT.2015.2478898.
  • [7] Subhashini K.R., Runner-Root Algorithm to Control Sidelobe Level and Null Depths in Linear Antenna Arrays, Arab J Sci Eng, 45 (2020), No. 3, 1513–1529, doi: 10.1007/s13369-019- 04051-x.
  • [8] Singh U., Salgotra R., Pattern Synthesis of Linear Antenna Arrays Using Enhanced Flower Pollination Algorithm, Int J Antennas Propag, (2017), 1–11, doi: 10.1155/2017/7158752.
  • [9] Kennedy J., Eberhart R., Particle swarm optimization, Proceedings of ICNN’95 - International Conference on Neural Networks, (1995), 1942–1948. doi: 10.1109/ICNN.1995.488968.
  • [10] Katoch S., Chauhan S.S., Kumar V., A Review on Genetic Algorithm: Past, Present, and Future, Multimed Tools Appl, 80 (2021), No. 5, 8091–8126, doi: 10.1007/s11042-020-10139-6.
  • [11] Civicioglu P., Backtracking Search Optimization Algorithm for Numerical Optimization Problems, Appl Math Comput, 219 (2013), No. 15, 8121–8144, doi: 10.1016/j.amc.2013.02.017.
  • [12] Meng X., Liu Y., Gao X., Zhang H., A New Bio-inspired Algorithm: Chicken Swarm Optimization, (2014), 86–94. doi: 10.1007/978-3-319-11857-4_10.
  • [13] Yang X.S., Firefly Algorithm, Stochastic Test Functions and Design Optimisation, International Journal of Bio-Inspired Computation, 2 (2010), No. 2, 78, doi: 10.1504/IJBIC.2010.032124.
  • [14] Yang X-S., Deb S., Cuckoo Search via Lévy Flights, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), (2009), 210–214. doi: 10.1109/NABIC.2009.5393690.
  • [15] Zhang R., Zhang Y., Sun J., Li Q., Pattern Synthesis of Linear Antenna Array Using Improved Differential Evolution Algorithm with SPS Framework, Sensors, 20 (2020), No. 18, 5158, doi: 10.3390/s20185158.
  • [16] Ilyas A.M., Suyuti A., Gunadin I.C., Said S.M., Real-Time Optimal Power Flow of South Sulawesi Network System that Integrated Wind Power Plant Based on Artificial Intelligence, Przeglad Elektrotechniczny, 1 (2022), No. 6, 170–173. doi: 10.15199/48.2022.06.03.
  • [17] Tidjani N., Ounnas D., Guessoum A., Teaching-Learning based Optimization Approach for Solar Cell Model Parameter Identification, Przeglad Elektrotechniczny, 1 (2023), No. 1, 35- 39. doi: 10.15199/48.2023.01.06.
  • [18] Djalal M.R., Saini M., Yunus A.M.S., Kitta I., Optimal Power System Stabilizer Design using Craziness Particle Swarm Optimization in Sulselrabar System, Przeglad Elektrotechniczny, 1 (2021), No. 10, 78–83. doi: 10.15199/48.2021.10.15.
  • [19] Malik N.N.N.A., Esa M., Yusof S.K.S., Latiff N.M.A., Collaborative Beamforming Null-steering Array for Wireless Sensor Networks, 2014 IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), (Nov. 2014), 316– 320. doi: 10.1109/ISTT.2014.7238227.
  • [20] Malik N.N.N.A., Esa M., Yusof S.K.S., Latiff N.M.A., Intelligent Linear Collaborative Beamforming for Multi-objective Radiation Beampattern in Wireless Sensor Networks, TELKOMNIKA Indonesian Journal of Electrical Engineering, 12 (2014), No. 10. doi: 10.11591/telkomnika.v12i10.6493.
  • [21] Sun G., LIU y., Chen Z., Wang A., Zhang Y., Tian D., Leung V.C.M., Energy Efficient Collaborative Beamforming for Reducing Sidelobe in Wireless Sensor Networks, IEEE Trans Mob Comput, 20 (2021), No. 3, 965–982. doi: 10.1109/TMC.2019.2955948.
  • [22] Malik N.N.N.A., Esa M., Yusof S.K.S., Hamzah S.A., Optimization of Linear Sensor Node Array for Wireless Sensor Networks using Particle Swarm Optimization, 2010 Asia-Pacific Microwave Conference, (2010), 1316–1319.
  • [23] Sun G., Liu Y., Wang A., Zhang J., Zhou X., Liu Z., Sidelobe Control by Node Selection Algorithm Based on Virtual Linear Array for Collaborative Beamforming in WSNs, Wirel Pers Commun, 90 (2016), No. 3, 1443–1462. doi: 10.1007/s11277- 016-3403-9.
  • [24] Sun G., Liu Y., Zhang J., Wang A., Zhou X., Node selection optimization for collaborative beamforming in wireless sensor networks, Ad Hoc Networks, 37 (2016), 389–403. doi: 10.1016/j.adhoc.2015.08.031.
  • [25] Malik N.N.N.A., Esa M., Yusof S.K.S., Ismail M.K.H., Hamzah S.A., Intelligent Circular Collaborative Beamforming Array in Wireless Sensor Network for Efficient Radiation, 2013 Asia-Pacific Microwave Conference Proceedings (APMC), (Nov. 2013), 1009–1011. doi: 10.1109/APMC.2013.6695006.
  • [26] Nazri N.N.A., Malik N.N.N.A., Idoumghar L., Latiff N.M.A., Ali S., Backtracking Search Optimization for Collaborative Beamforming in Wireless Sensor Networks, TELKOMNIKA (Telecommunication Computing Electronics and Control), 16 (2018), No. 4, 1801. doi: 10.12928/telkomnika.v16i4.9058.
  • [27] Liang S., Feng T., Sun G., Zhang J., Zhang H., Transmission Power Optimization for Reducing Sidelobe via Bat-Chicken Swarm Optimization in Distributed Collaborative Beamforming, 2016 2nd IEEE International Conference on Computer and Communications (ICCC), (Oct. 2016), 2164–2168. doi: 10.1109/CompComm.2016.7925083.
  • [28] Jayaprakasam S., Rahim S.K.A., Leow C.Y., Ting T.O., Eteng A.A., Multiobjective Beampattern Optimization in Collaborative Beamforming via NSGA-II With Selective Distance, IEEE Trans Antennas Propag, 65 (2017), No. 5, 2348–2357. doi: 10.1109/TAP.2017.2684187.
  • [29] Macharia R., Lang’at K., Kihato P., Concurrent Sidelobe Minimization and Node Transmission Power Reduction in Collaborative Beamforming in Wireless Sensor Networks, Proceedings of the 2021 Sustainable Research & Innovation (SRI) Conference, (2021), 6 October-7 October.
  • [30] Sun G., Liu Y., Shen G., Wang A., Zhang Y., Leung V.C.M., Multi-objective Optimization for Distributed Collaborative Beamforming in Mobile Wireless Sensor Networks, 2018 IEEE Symposium on Computers and Communications (ISCC), (Jun. 2018), 00752–00758. doi: 10.1109/ISCC.2018.8538536.
  • [31] Zhou Q., Zhang Y., Zhang Y., Sun G., Zou D., Chen Y., Liu Y., An Improved Cuckoo search Algorithm for Optimizing the Beam Patterns of the Random Antenna Arrays, 2018 IEEE 4th International Conference on Computer and Communications (ICCC), (Dec. 2018), 1018–1021. doi: 10.1109/CompComm.2018.8781018.
  • [32] Li J., Kang H., Sun G., Liang S., Liu Y., Zhang Y., “Physical Layer Secure Communications Based on Collaborative Beamforming for UAV Networks: A Multi-objective Optimization Approach, IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, (May 2021), 1–10. doi: 10.1109/INFOCOM42981.2021.9488827.
  • [33] Wang A., Wang Y., Sun G., Li J., Liang S., Liu Y., Uplink Data Transmission Based on Collaborative Beamforming in UAV-assisted MWSNs, 2021 IEEE Global Communications Conference (GLOBECOM), (Dec. 2021), 1–6. doi: 10.1109/GLOBECOM46510.2021.9685853.
  • [34] Liu Y., Zheng T., Sun G., Zhang J., Li J., A Joint Optimization Approach for UAV-enabled Collaborative Beamforming, 2021 IEEE Symposium on Computers and Communications (ISCC), (Sep. 2021), 1–6. doi: 10.1109/ISCC53001.2021.9631417.
  • [35] Sun G., Zhao X., Shen G., Liu Y., Wang A., Jayaprakasam S., Zhang Y., Leung V.C.M., Improving Performance of Distributed Collaborative Beamforming in Mobile Wireless Sensor Networks: A Multiobjective Optimization Method, IEEE Internet Things J, 7 (2020), No. 8, 6787–6801. doi: 10.1109/JIOT.2020.2983519.
  • [36] Jayaprakasam S., Rahim S.K.A., Leow C.Y., Distributed and Collaborative Beamforming in Wireless Sensor Networks: Classifications, Trends, and Research Directions, IEEE Communications Surveys & Tutorials, 19 (2017), No. 4, 2092– 2116, doi: 10.1109/COMST.2017.2720690.
  • [37] Jayaprakasam S.,
  • [Thesis] Optimisation of Collaborative Beamforming Wireless Networks using Metaheuristic Methods, 2016.
  • [38] Atashpaz-Gargari E., Lucas C., Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition, 2007 IEEE Congress on Evolutionary Computation, (Sep. 2007), 4661–4667. doi: 10.1109/CEC.2007.4425083.
  • [39] Hosseini S.M., al Khaled A., A Survey on the Imperialist Competitive Algorithm Metaheuristic: Implementation in Engineering Domain and Directions for Future Research, Appl Soft Comput, 24 (2014), 1078–1094. doi: 10.1016/j.asoc.2014.08.024.
  • [40] Balanis C.A., Antenna Theory Analysis And Design Third Edition, 3rd ed. Hoboken, New Jersey: John Wiley & Sons. Inc., 2005.
  • [Online]. Available: www.copyright.com.
  • [41] Nazari-Shirkouhi S., Eivazy H., Ghodsi R., Rezaie K., Atashpaz-Gargari E., Solving The Integrated Product Mix-Outsourcing Problem Using The Imperialist Competitive Algorithm, Expert Syst Appl, 37 (2010), No. 12, 7615–7626. doi: 10.1016/j.eswa.2010.04.081.
  • [42] Yousefikhoshbakht M., Sedighpour M., New Imperialist Competitive Algorithm To Solve The Travelling Salesman Problem, Int J Comput Math, 90 (2013), No. 7, 1495–1505. doi: 10.1080/00207160.2012.758362.
  • [43] Hosseini S.M., Khaled A.A., Jin M., Solving Euclidean Minimal Spanning Tree Problem Using A New Meta-Heuristic Approach: Imperialist Competitive Algorithm (ICA), 2012 IEEE International Conference on Industrial Engineering and Engineering Management, (Dec. 2012), 176–181. doi: 10.1109/IEEM.2012.6837725.
  • [44] Karami A., Rezaei E., Shahhosseni M., Aghakhani M., Optimization Of Heat Transfer In An Air Cooler Equipped With Classic Twisted Tape Inserts Using Imperialist Competitive Algorithm, Exp Therm Fluid Sci, 38 (2012), 195–200. doi: 10.1016/j.expthermflusci.2011.12.007.
  • [45] Taher S.A., Fini M.H., Aliabadi S.F., Fractional Order PID Controller Design For LFC In Electric Power Systems Using Imperialist Competitive Algorithm, Ain Shams Engineering Journal, 5 (2014), No. 1, 121–135. doi: 10.1016/j.asej.2013.07.006.
  • [46] Al Dossary M. A., Nasrabadi H., Well Placement Optimization Using Imperialist Competitive Algorithm, J Pet Sci Eng, 147 (2016), 237–248. doi: 10.1016/j.petrol.2016.06.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b71996d-ebd5-4915-8f99-529bc8ac5a9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.