Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Waste management is a very important issue for the sustainable development of the modern world. The metallurgical industry is an industry that has been generating and still generates large amounts of waste that may have a negative impact on the natural environment and human health. Metallurgical waste comes from current production and is collected in landfills/heaps. Any research enabling the management of waste, including metallurgical waste, is justified. This study presents the results of research on waste that can be used in the production of aggregates – research related to natural radioactivity and the introduction of hazardous substances into water or soil. The study highlights the diversified chemical composition of metallurgical waste, which requires detailed research of the waste before it is directed to the production of aggregates. Aggregate, as a building material, is subject to specific legal (normative) regulations. Metallurgical waste that meets the requirements for the protection of the natural environment and human health should be used for the production of building materials - it is an environmentally friendly activity that implements the principles of sustainable development.
Czasopismo
Rocznik
Tom
Strony
252--256
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering, Department of Production Engineering, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering, Department of Production Engineering, Krasińskiego 8, 40-019 Katowice, Poland Tel.: + 48 32 6034412
Bibliografia
- 1. Alwaeli, M., Gołaszewski, J., Niesler, M., Pizoń, J., Gołaszewska, M., 2020. Recycle option for metallurgical sludge waste as a partial replacement for natural sand in mortars containing CSA cement to save the environment and natural resources. Journal of Hazardous Materials, 398, 23101, DOI: 10.1016/j.jhazmat.2020.12310132768842
- 2. Baricova, D., Pribulova, A., Futas, P., 2011. Analysis of Metallurgical Slags Utilization in the Road Engineering. 11th International Multidisciplinary Scientific GeoConference, 3, 785-791.10.5593/sgem2011/s21.101
- 3. Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment and Directive 2010/75/eu of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control).
- 4. Dohojda, M., Rubin J. A., 2009. Promieniotwórczość naturalna wybranych kruszyw budowlanych. Materiały ceramiczne, 61(1), 55-58.
- 5. EN 1483:2007. Water quality. Determination of mercury.
- 6. EN 1744-3:2002. Tests for chemical properties of aggregates – Part 3: Preparation of eluates by leaching of aggregates.
- 7. EN 12620:2002+A1:2008. Aggregates for concrete.
- 8. EN 13043:2013. Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas.
- 9. EN 13055:2016. Lightweight aggregates.
- 10. EN 13139:2013. Aggregates for mortar.
- 11. EN 13242:2013. Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction.
- 12. EN 13383-1:2013. Armourstone – Part 1: Specification.
- 13. EN 13450:2013. Aggregates for railway ballast.
- 14. Góralczyk, S., Kukielska D., 2011. Produkcja kruszyw z surowców wtórnych. Kruszywa wtórne, 33-38.
- 15. https://poradnik.pkt.pl/inne/w-jaki-sposob-najlepiej-wykorzystac-materialyzuzlowe-ze-starych-hald (10.03.2022)
- 16. https://harscometals.pl/kruszywa-hutnicze/ (10.03.2022)
- 17. Ilutiu - Varvara D., 2016. A researching the hazardous potential of metallurgical solid wastes. Polish Journal of Environmental Studies, 25(1), 147-152, DOI: 10.15244/pjoes/60178
- 18. ISO 10304-1:2007.Water quality – Determination of dissolved anions by liquid chromatography of ions – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.
- 19. ISO 10523:2008. Water quality – Determination of pH.
- 20. ISO 11885:2007. Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Determination of antimony, barium, cadmium, chromium, copper, molybdenum, nickel, lead, zinc.
- 21. ISO 11969:1999. Water quality – Determination of arsenic – Atomic absorption spectrometric method (hydride technique).
- 22. Jonczy, I., Huber, M., Lata, L., 2014. Zeszklone odpady hutnicze po produkcji cynku i ołowiu ze zwałowiska w Rudzie Śląskiej w aspekcie badań mineralogiczno-chemicznych. Mineral Resources Management, 30(1), 161-174.10.2478/gospo-2014-0008
- 23. Jursova, S., 2010. Metallurgical waste and possibilities of its processing, 19th International Conference on Metallurgy and Materials. Brno, Tanger, 115-120.
- 24. Kozioł, W., Baic, I., Machniak, Ł., 2016. Production and Applicatikon of Aggregates Made of Waste Recyclabes. Annual Set The Environment Protection, 18, 831-849.
- 25. Lis, T., Nowacki, K., 2012. Options of utilizing steelmaking dust in a nonmetallurgical industry. Metalurgija, 51(2), 257-260.
- 26. Matinde, E., Simate, G.S., Ndlovu, S., 2018. Mining and metallurgical wastes: a review of recycling and re-use practices. Journal of the Southern African Institute of Mining and Metallurgy, 118(8), 825-844.10.17159/2411-9717/2018/v118n8a5
- 27. Milosan, I., Derczeni, R.A., 2013. Some Aspects About the Manufacturing of the Metallurgical Waste. Metalurgia International, 18, 159-162.
- 28. Pitak, N.M., Parsons, M.B., Seal, R.R., 2015. Characteristics and environmental aspects of slag: A review, Applied Geochemistry, 57, 236-266.10.1016/j.apgeochem.2014.04.009
- 29. Pizoń, J., Gołaszewski, J., Alwaeli, M., Szwan, P., 2020. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials 13, 1448, DOI: 10.3390/ma13061448714245832235790
- 30. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 march 2011 laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC.
- 31. Seco, A., Echeverría, A.M., Marcelino, S., García, B., Espuelas, S., 2020. Characterization of Fresh and Cured Properties of Polymer Concretes Based on Two Metallurgical Wastes. Applied Sciences 10, 825, DOI: 10.3390/app10030825
- 32. Soultana, A., Valouma, A., Bartzas, G., Komnitsas, K., 2019. Properties of Inorganic Polymers Produced from Brick Waste and Metallurgical Slag, Minerals, 9, 551. DOI: 10.3390/min9090551
- 33. Suvorova, O.V., Selivanova, E.A., Mikhailova, J.A., Masloboev, V.A., Makarov, D.V., 2020. Ceramic Products from Mining and Metallurgical Waste. Applied Sciences 10, 3515, DOI: 10.3390/app10103515
- 34. Wowkonowicz, P., Bojanowicz-Bablok, A., Gworek, B., 2018. Wykorzystanie odpadów z przemysłu wydobywczego i hutnictwa w drogownictwie, Rocznik Ochrona Środowiska, 20, 1335-1349.
- 35. Xu, D. L., Li, H., 2006. Metallurgical slags, fly ash and coal waste – The future resources for eco-building materials, Xian International Conference on Architecture and Technology, 479-496.
- 36. Yang, S. J., et al., 2012. Intensive Development and Comprehensive Utilization of Metallurgical Slag, Applied Mechanics and Materials, 174-177, 1424-1428. DOI: 10.4028/www-1scientific-1net-1pikx7hw807b2.han.polsl.pl/amm.174-177.1424.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b69785c-90cb-4e22-954c-a463ca4452b9