Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ postrzeganej przydatności i łatwości użytkowania na pokoleniu Y i ich stosunek studentów do usług streamingowych w Afryce Południowej
Języki publikacji
Abstrakty
Streaming is one of the fastest-growing media markets in South Africa, disrupting the traditional broadcasting model. Members of Generation Y are particularly likely to adopt streaming services over traditional media given that they are more digitally astute than members of preceding generations. That being said, the uptake and continued success of streaming services amongst Generation Y depends on their attitude towards such services. The aim of this study was to apply the technology acceptance model (TAM) to determine Generation Y students’ attitude towards on-demand streaming services in South Africa. Self-administered questionnaires were distributed to a convenience sample of 425 students registered at two South African public higher education institutions. Data analysis included confirmatory factor analysis, path analysis and measures of reliability and construct validity. The results confirm that both perceived usefulness and perceived ease of use have a statistically significant positive influence on Generation Y students’ attitude towards streaming services. The managerial implications of these findings suggest that marketers of streaming services targeted at Generation Y need to ensure that their service offers as much functionality as possible and that these functions are user-friendly.
Streaming jest jednym z najszybciej rozwijających się rynków medialnych w Południowej Afryce, co zakłóca tradycyjny model nadawania. Członkowie pokolenia Y szczególnie chętnie przyjmą usługi przesyłania strumieniowego za pośrednictwem tradycyjnych mediów, biorąc pod uwagę, że są bardziej sprytni cyfrowo niż członkowie poprzednich pokoleń. Biorąc to pod uwagę, absorpcja i ciągły sukces usług przesyłania strumieniowego wśród generacji Y zależy od ich stosunku do takich usług. Celem tego badania było zastosowanie modelu akceptacji technologii (TAM), aby określić stosunek studentów pokolenia Y do usług przesyłania strumieniowego na żądanie w Południowej Afryce. Samo administrowane kwestionariusze zostały rozprowadzone wśród dogodnej próby 425 studentów zarejestrowanych w dwóch południowoafrykańskich publicznych szkołach wyższych. Analiza danych obejmowała potwierdzającą analizę czynnikową, analizę ścieżki oraz miary wiarygodności i poprawności konstrukcji. Wyniki potwierdzają, że zarówno postrzegana użyteczność, jak i postrzegana łatwość użytkowania mają statystycznie istotny pozytywny wpływ na stosunek studentów pokolenia Y do usług transmisji strumieniowej. Implikacje zarządcze tych ustaleń sugerują, że marketerzy usług przesyłania strumieniowego ukierunkowanych na generację Y muszą zapewnić, aby ich usługi oferowały jak najwięcej funkcji oraz że funkcje te są przyjazne dla użytkownika.
Czasopismo
Rocznik
Tom
Strony
224--235
Opis fizyczny
Bibliogr. 46 poz., tab.
Twórcy
autor
- School of Management Sciences, North-West University
autor
- School of Management Sciences, North-West University
autor
- School of Management Sciences, North-West University
Bibliografia
- 1. Ajzen, I., (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
- 2. Allan, N., (2017). Filmed entertainment. Available at: https://www.pwc.co.za/en/assets/pdf/enm-20120-chapter4.pdf
- 3. Bevan-Dye, A.L., & Akpojivi, U., (2016). South African Generation Y students’ self-disclosure on Facebook. South African Journal of Psychology, 46(1), 114-129.
- 4. Bhoot, G., (2017). Music Industry Sales: How streaming services such as Spotify, Apple Music and TIDAL affect album sales.
- 5. Bond, S., & Garraghan, M., (2015). Broadcasters fear falling revenues as viewers switch to on-demand TV. Available: FT. com (Accessed February 22th 2015).
- 6. Brezavšček, A., Šparl, P., Žnidaršič, A., (2014). Extended technology acceptance model for SPSS acceptance among Slovenian students of social sciences, Organizacija, 47(2), 116-127.
- 7. Davis, F.D., Bagozzi, R.P., Warshaw, P.R., (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
- 8. DiscoverDigital, (2017). Unpacking the global video on demand (VOD) content flighting debate - Discover Digital. Available at: https://www.discoverdigital.co.za/unpacking-the-global-video-on-demand-vod-content-flighting-debate/
- 9. Durodolu, O.O., (2016). Technology acceptance model as a predictor of using information system to acquire information literacy skills Library Philosophy and Practice, 1450, 1-28.
- 10. Dziak, D., Jachimczyk, B., Kulesza, W., (2017). IoT-based information system for healthcare application: design methodology approach Applied Sciences, 7(6), 596.
- 11. Field, A., (2009). Discovering statistics using SPSS, 3rd ed. London: Sage.
- 12. Fishbein, M., Ajzen, I., (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
- 13. Florenthal, B., (2019). Young consumers’ motivational drivers of brand engagement behavior on social media sites Journal of Research in Interactive Marketing, 13(3), 351-391.
- 14. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., (2010). Multivariate data analysis: A global perspective, 7th ed. Upper Saddle River, NJ: Pearson.
- 15. Hedley, N., (2018). How rivals are eating DSTV’s lunch. Sunday Times, April 29. Available at: https://www.pressreader.com/
- 16. Ho, C., & Yang, C., (2015). A study on behavior intention to use live streaming video platform based on TAM model, Proceedings of the The Asian Conference on Psychology and Behavioral Sciences 2015.
- 17. Howe, N., (2019). How Music Streaming Won Over Millennials. Forbes, January 16. Available at: https://www.forbes.com/sites/neilhowe/2019/01/16/how-music-streaming-won-over-millennials/#2aca3d8f25c7
- 18. INFONETICS, (2011). IPTV Services Getting Highly Personalized, Highly Integrated, Portable, On-Demand. Available at: http://www.infonetics.com/pr/2011/lte-deployment-strategies-service-provider-survey-highlights.asp
- 19. Koh, C.E., Prybutok, V.R., Ryan, S.D., Wu, Y., (2010). A model for mandatory use of software technologies: An integrative approach by applying multiple levels of abstraction of informing science Informing Science , 13.
- 20. Lee, Y., Kozar, K.A., Larsen, K.R., (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 50.
- 21. Malhotra, N.K., Birks, D.K., & Wills, P., (2010). Marketing Research: An Applied Orientation (6th Europian ed.). England: Pearson Education Limited.
- 22. Markert, J., (2004). Demographics of age: generational and cohort confusion. Journal of Current Issues & Research in Advertising, 26(2), 11-25.
- 23. Martin, K., Quan-Haase, A., (2013). Are e‐books replacing print books? Tradition, serendipity, and opportunity in the adoption and use of e-books for historical research and teaching. Journal of the American Society for Information Science and Technology, 64(5), 1016-1028.
- 24. Matangira, L., (2018). Nearly 60% of South Africans now have access to the internet. Available at: https://ewn.co.za/2018/02/05/nearly-60-of-south-africans-now-have-access-to-the-internet
- 25. Ndlovu, M., (2019). What lies behind the decline in DStv’s Premium subscribers? The Media Online, March 13. Available at: https://themediaonline.co.za/2019/03/what-lies-behind-the-so-called-decline-in-dstvs-premium-subscribers/
- 26. Nor, K.M., Pearson, J.M., (2008). An exploratory study into the adoption of internet banking in a developing country: Malaysia. Journal of Internet Commerce, 7(1), 29-73.
- 27. Nysveen, H., Pedersen, P.E., Thorbjørnsen, H., (2005). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the Academy of Marketing Science, 33(3), 330-346.
- 28. Oni, A.A., Ayo, C.K., (2010). An empirical investigation of the level of users’ acceptance of e-banking in Nigeria. Journal of Internet Banking and Commerce, 15(1), 1-13.
- 29. Ossia Records, (2017). Ossia Records. Available at: https://www.ossiarecords.com/single-post/2016/07/05/South-Africas-Underperforming-Music-Industry
- 30. Pal, D., Triyason, T., (2017). User Intention towards a Music Streaming Service: A Thailand Case Study. IAIT Conference Proceedings of the 9th International Conference on Advances in Information Technology, KnE Social Sciences.
- 31. Park, S.Y., (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning Educational Technology & Society, 12(3), 150-162.
- 32. PwC., (2017). Digital fuels growth in Africa’s entertainment and media industry. Available at: https://www.pwc.co.za/en/press-room/digital-fuels-growth.html
- 33. Schiffman, L.G. Kanuk, L.L., Wisenblit, J., (2010). Consumer Behavior, 10th ed. Upper Saddle River, U.S.A.: Pearson Prentice Hall.
- 34. Shin, D.H., (2009). Determinants of customer acceptance of multi-service network: An implication for IP-based technologies Information & Management, 46(1), 16-22.
- 35. Statistics South Africa, (2018). Statistical Release P0302: 2018 Mid-year Population Estimates. Available at: http://www.statssa.gov.za/publications/P0302/P03022017.pdf
- 36. Surendran, P., (2012). Technology acceptance model: A survey of literature. International Journal of Business and Social Research, 2(4), 175-178.
- 37. Szajna, B., (1996) Empirical evaluation of the revised technology acceptance model Management Science, 42(1), 85-92.
- 38. TechCentral, (2017). Digital technology reshaping SA's media landscape - TechCentral. Available at: https://techcentral.co.za/digital-technology-reshaping-sas-media-landscape/26793/
- 39. Tryon, C., (2013). On-demand culture: Digital delivery and the future of movies. Rutgers University Press.
- 40. Universities South Africa., (2017). Public universities in South Africa. Available at: https://www.usaf.ac.za/public-universities-in-south-africa/
- 41. Venkatesh, V., (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model Information Systems Research, 11(4), 342-365.
- 42. Venkatesh, V., Thong, J.Y., Xu, X., (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology MIS Quarterly, 36(1), 157-178.
- 43. Vilas, M., Pañeda, X.G., García, R., Melendi, D., García, V.G., (2005). User behavior analysis of a video-on-demand service with a wide variety of subjects and lengths, Proceedings of the 31st EUROMICRO Conference on Software Engineering and Advanced Applications.
- 44. Wang, K., (2015). Determinants of mobile value-added service continuance: The mediating role of service experience Information & Management, 52(3), 261-274.
- 45. Wu, J.H., Wang, S.C., (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model Information & Management, 42(5), 719-729.
- 46. Yang, H., Lee, H., (2018). Exploring user acceptance of streaming media devices: an extended perspective of flow theory Information Systems & e-Business Management, 16(1), 1-27.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b695f66-5c41-4401-b8aa-d13a00202848