PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uptake of copper ion using protonated dry alginate beads from dilute aqueous solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aimed to identify the copper ion removal mechanism when using protonated dry alginate beads. This mechanism was explained through ion exchange between Cu ions and the protons from the functional groups of the alginate beads. Copper removal increased with stirring velocity, reaching values of 97.5 mg g-1 (97.5×10-3 kg/kg of PDAB) of dry alginate at 200 rev min-1, at a solution pH of 6.0 and a run time of 360 min. For the lowest level of copper concentrations, at 10 mg dm-3 (10×10-6 kg dm-3), full removal was attained. The removal kinetics was represented by a pseudo- first order model. A value of 0.0131 min-1 was found for the velocity constant. Under equilibrium conditions, the experiment data was fit to the Langmuir adsorption model, and the highest removal values were 270.3, 222.2 (222.2×10-3 kg/kg of PDAB) and 49 mg g-1 (49×10-3 kg/kg of PDAB) for pH values of 5.0, 3.5 and 2.5, respectively. These are higher than most sorbents used in the literature for copper removal. Increased temperature leads to higher Cu removal. The activation energy was calculated at 9.3 kJ mol-1 for the temperature range of 283 to 343K. Observations using SEM and composition measurements of the alginate cross-section taken by EDS showed a uniform distribution of the copper concentration through the structure of the alginate beads, independent of the solution pH, contact time and temperature.
Rocznik
Strony
732--744
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Pontificia Universidad Católica de Valparaíso, Avda. Brasil 2162, 2362854 Valparaíso, Chile
  • Pontificia Universidad Católica de Valparaíso
autor
  • Universidad de Concepción
  • Universidad Tecnológica Metropolitana
Bibliografia
  • ABU, F.A., EL-NASS, MH., ASHOUR, I. and AL-MARZOUQI, M., 2006. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions, Process Biochemistry 41, 457-464.
  • ARACENA, A., GUAJARDO, N., IBÁÑEZ, J.P., JEREZ, O., CARLESI, C., 2015. Uptake of nickel ions from aqueous solutions using protonated dry alginate beads, Canadian Metallurgical Quarterly 54, 58-65.
  • BENAÏSSA, H., ELOUCHDI, M.A., 2011. Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge, Journal of Hazardous Materials 194, 69-78.
  • CHANG, J., HUANG, C., CHENG, S., SHEN, S., 2017. Transport characteristics and removal efficiency of copper ions in the electrodialysis process under electroconvention operation, Process Safety Environmental Protection 112, 235-242.
  • CHIRON, N., GUILET, R., DEYDIER, E., 2003. Adsorption of Cu(II) en Pb(II) onto a grafted silica: isotherms and kinetic models, Water Research 37, 3079-3086.
  • DEMOPOULOS, D.P., 1998. Aqueous processing and its role in the production of inorganic materials and environmental protection, Canadian Metallurgical Quarterly 37, 1-18.
  • DI CAPRIO, F., ALTIMARI, P., UCCELLETTI, D., PAGNANELLI, F., 2014. Mechanistic modelling of copper biosorption by wild type and engineered Saccharomyces cerevisiase biomasses, Chemical Engineering Journal 244, 561-568.
  • FENG, D., ALDRICH, C., TAN, H., 2000. Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering 13, 623-642.
  • FOUREST, E., VOLESKY, B., 1996. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassumm fluitans, Environ. Sci. Technol. 30, 277-282.
  • HO Y.S., McKAY, G., 2000. The kinetics of sorption of divalent metal ion sonto Sphagnum Moss Peat, Water Research 34, 735-742.
  • HO, Y.S., McKAY, G., 2003. Sorption of dyes and copper ions onto biosorbents, Process Biochemistry 38, 1047-1061.
  • HUANG, H., 2017. Extraction of copper species from the nanoporous sorbent with an ionic liquid, Journal of Molecular Liquids, 230, 24-27.
  • HU, H., ZHANG, J., LU, K., TIAN, Y., 2005. Characterization of Acidosasa edulis and its biosorption of copper ions from aqueous solution, Journal of Environmental Chemical Engineering 3, 357-364.
  • IBÁÑEZ, J.P., ARACENA, A., 2014. Uptake of Zn2+ from dilute aqueous solutions using protonated dry alginated beads, Canadian Metallurgical Quarterly 53, 82-87.
  • IBÁÑEZ, J.P., UMETSU, Y., 2002. Potential of protonated alginate beads for heavy metals uptake, Hydrometallurgy 64, 89-99.
  • IBÁÑEZ, J.P., UMETSU, Y., 2004. Uptake of trivalent chromium from aqueous solutions using protonated dry alginate beads, Hydrometallurgy 72, 327-334.
  • IBÁÑEZ, J.P., UMETSU, Y., 2008. Uptake of Cd2+ from aqueous solutions using protonated dry alginated beads, Canadian Metallurgical Quarterly 47, 45-50.
  • KANDAH, M., ABU, F.A., AL-DABAYBEH, N., 2002, Competitive adsorption of copper-nickel and copper-cadmium binaries on SMW, Engineering in Life Science 8, 237-243.
  • KASAIE, M., BAHENANYAR, H., MOOSAVIAN, M., 2017. A kinetic study on solvent extraction of copper from sulfate solution with Cupromex-3302 using Lewis cell, Journal of Environmental Chemical Engineering 5, 3044-3050.
  • KHORMAEI, M., NASERNEJAD, B., EDRISI, M., ESLAMZADEH, T., 2007. Copper biosorption from aqueous solutions by sour orange residue, Journal of Hazardous Materials 149, 269-274.
  • KHOSRAVI, J., ALAMDARI, A., 2009. Copper removal from oil-field drine by coprecipitation, Journal of Hazardous Materials, 166, 695-700.
  • KIRAN ,B., THANASEKARAN, K., 2011. Copper biosorption on Lyngbya putealis: Application of response surface methodology (RSM), International Biodeterioration & Biodegradation 65, 840-845.
  • RAHIMI, M., SCHOENER, Z., ZHU, X., LOGAN, B.E., 2017. Removal of copper from water using a thermally regenerative electrodeposition battery, Journal of Hazardous Materials 322, 551-556.
  • ROINE, A., 1999. HSC Chemistry 6.0, Pori, Finlandia: OutoKumpu Research Py.
  • SAMADI, N., ANSARI, R., KHODAVIRDILO, B., 2017. Removal of copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride), Egyptian Journal of Petroleum 26, 375-389.
  • SEDRA, N., KOENIGSMARK, F. and VADAS, T., 2016. Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability, Chemosphere, 147, 272-278
  • SHENG, P.X., TING, Y., CHEN, J.P. and HONG, L., 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanism, Journal of Colloid and Interface Science 275, 131-141.
  • SO, Y., 2004. Citation review of Lagergen kinetic rate equation on adsorption reactions, Scientometrics 59, 171-177.
  • XIE, X., DENG, R. PANG, Y. BAI, Y., ZHON, Y., 2017. Adsorption of copper(II) by sulfur microparticles, Chemical Engineering Journal, 314, 434-442.
  • YAHAYA, YA., DON, M.M., BHATIA, S., 2009. Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies, Journal of Hazardous Materials 161, 189-195.
  • YARGIҪ, A.S., YARBAY ŞAHUN, R.Z., ÖZBAY, N., ÖNAL, E., 2015. Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste, Journal of Cleaner Production 88, 152-159.
  • ZHANG, Y., LIU, W., XU, M., ZHENG, F., ZHAO, M., 2010. Study of the mechanism of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass, Journal of Hazardous Materials 178, 1085-1093.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b68851c-1a44-43dd-a9ec-e5ce9c17c4a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.