PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Testing of Multibioagent Inoculants to Control Bipolaris spicifera R15 on Rice Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research deals with greenhouse studies on the efficacy of Cladosporium halotolerans CIR 18_ITS and Meyerozyma guilliermondii MIR 15_ITS compared with a compatible Trichoderma isolate T.4679 to control the phytopathogenic Bipolaris spicifera R15 fungus. An experiment was carried out under controlled conditions in a greenhouse with sterilised soil, and 13 parameters were evaluated. The greenhouse results triggered significant differences [p<0.05] on rice plants after two-month post planting in all treatments compared with the untreated control due to pre-inoculation with three multibiocontrol agents. In addition, results showed the significant interaction amongst three multibiocontrol agents on the growth parameters of the rice plant, fresh weight of shoot and root, dry weight of shoot, root, shoot and root length and greater efficiency of reducing disease severity when treated with the Trichoderma isolate T.4679, M. guilliermondii MIR 15_ITS and C. halotolerans CIR 18_ITS individually or in combination with each other. The greenhouse experiment exhibited that C. halotolerans CIR 18_ITS alone, M. guilliermondii MIR 15_ITS alone, C. halotolerans CIR 18_ITS + C. halotolerans CIR 18_ITS and M. guilliermondii MIR 15_ITS + Trichoderma isolate T.4679 + C. halotolerans CIR 18_ITS + C. halotolerans CIR 18_ITS have greater efficiency of reducing disease infection and severity by approximately 11.11% and 6.67%, respectively, amongst all treatments mentioned.
Rocznik
Strony
168--177
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Agriculture Research Directorate, Integrated Pest Management Center, Ministry of Science and Technology, Baghdad, Iraq
  • Agriculture Research Directorate, Integrated Pest Management Center, Ministry of Science and Technology, Baghdad, Iraq
  • Agriculture Research Directorate, Integrated Pest Management Center, Ministry of Science and Technology, Baghdad, Iraq
  • Agriculture Research Directorate, Integrated Pest Management Center, Ministry of Science and Technology, Baghdad, Iraq
Bibliografia
  • 1. Aban J.L. 2017a. Taxonomic diversity, potential growth promoting capacity and cophysiological drought stress-adaptive mechanisms of root symbiotic fungi (RSF) from Drynaria quercifolia L. and their effects on rice (Oryza sativa L.). Ph.D. Dissertation. Saint Louis University. Baguio City, Philippines, 1–59.
  • 2. Aban J.L., Hipol R.M., Balangcod T.D., Gutierrez R.M., Barcelo R.C., Oda E.E., Reyes G.A. 2017b. Diversity and phylogenetic relationships among isolated root symbiotic fungi from drynariaquercifolia L. in La Union, Philippines.
  • 3. Alfredo M.S., Aleli Cornelia R.P. 2011. Biological control of sheath blight of upland rice withTrichoderma species. Journal Tropical Plant Pathology, 69, 1–9.
  • 4. Al-Rahbi B.A.A., Al-Sadi A.M., Al-Mahmooli I.H. et al. 2021. Meyerozyma guilliermondii SQUCC-33Y suppresses postharvest fruit rot of strawberry caused by Alternaria alternata. Australasian Plant Pathol. https://doi.org/10.1007/s13313–021–00779-z.
  • 5. Alizadeh M., Vasebi Y., Safaie N. 2020. Microbial antagonists against plant pathogens in Iran: A review. Open Agriculture, 5(1), 404–440.
  • 6. Chaibub A.A., de Carvalho J.C.B., de Sousa Silva C., Collevatti R.G., Gonçalves F.J., Côrtes M.V. D. C.B., de Filippi M.C.C., de Faria F.P., Lopes D.C.B., de Araújo L.G. 2016. Defence responses in rice plants in prior and simultaneous applications of Cladosporium sp. during leaf blast suppression. Environmental Science and Pollution Research, 23(21), 21554–21564.
  • 7. Chaibub A.A., de Sousa T.P., de Araújo L.G., de Filippi M.C.C. 2019. Cladosporium cladosporioides C24G modulates gene expression and enzymatic activity during leaf blast suppression in rice plants. Journal of Plant Growth Regulation, 1–13.
  • 8. Chaibub A.A., de Sousa T.P., de Araújo L.G., de Filippi M.C.C. 2020a. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiocontrol Research, 231, 126353.
  • 9. Chaibub A.A., Sousa T.P., Oliveira M.I., Arriel-Elias M.T.,Araújo L.G., Filippi M. 2020b. Efficacy of Cladosporium cladosporioides C24G as a multifunctional agent in upland rice in agroecological systems. International Journal of Plant Production, 14, 463–474.
  • 10. Cheng D.L., Ngo H.H., Guo W.S., Chang S.W., Nguyen D.D., Kumar S.M. 2018. Bioresour Technol., 11(275), 109–122. https://doi.org/10.1016/j.biortech.2018.12.019.
  • 11. Choińska R., Piasecka-Jóźwiak K., Chabłowska B., Dumka J., Łukaszewicz A. 2020. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek, 113(8),1135–1146.
  • 12. Coda R., Rizzello C.G., Cagno R.Di., Trani A., et al. 2013. Antifungal activity of Meyerozyma guilliermondii: Identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol, 33, 243–251.
  • 13. Coley-Smith J.R., Ghaffar A., Javed Z.U.R. 1974. The effect of dry conditions on subsequent leakage and rotting of fungal sclerotia. Soil Biology Biochema, 6, 307–312.
  • 14. Duncan D.B. 1955. Multiple ranges and multiple F. test. Biometrics, 11, 11–24.
  • 15. El-Fahham, Gamila I.S. 1993. Further studies on damping off and root rot of lentil plants under new reclaimed soil areas. Ph.D. Thesis, Fac. Agric., Zagazig Univ. Egypt, 102.
  • 16. Elena M. 2018. Symbiosis between arthropods and fungi: the case of Phlebotomus perniciosus, the vector of visceral and canine leishmaniasis. Ph.D Thesis. Department of Biosciences Università degli Studi di Milano.
  • 17. Ercan G. 2019. Dual biocontrol control: characterization of fungi and bacteria to control granary weevil and fungal pathogens of stored grain. Theses, Dissertations, and Student Research in Agronomy and Horticulture. 175. https://digitalcommons.unl.edu/agronhortdiss/175.
  • 18. Gámez-Guzmán A., Torres-Rojas E., Gaigl A. 2019. Potential of a Cladosporium cladosporioides strain for the control of Tetranychus urticae Koch [Acari: Tetranychidae] under laboratory conditions. Agronomía Colombiana, 37(1), 84–89.
  • 19. Hamdia Z., Ali. 2014. Efficiency of Trichoderma isolates and Bacillus subtilis UKM1 as biocontrol agents against Magnaporthe grisea , Rhizoctonia solani and Fusarium solani in rice. PhD Thesis. Faculty of Science and Technology. Universiti Kebangsaan Malaysia. Malaysia.
  • 20. Hamdia Z.A., AbdulRahman A.A., Ali A.A., Hutham M.S. 2016a. Prescreening of pathogenicity of rice pathogens prior to biological control assay under greenhouse conditions. Asian J. of Science and Technology, 7(2), 416–2422.
  • 21. Hamdia Z.A., Hadi M.A., Naeem S.D., AbdulRahman A.A., Ameera S.M., Hutham M.S., Suraa H. O., Salam D.S. 2016b. Detection and identification of mycobiota associated with rice in three districts of Iraq. Int. J. Phytopathology, 5(1), 11–27.
  • 22. Hamdia Z.A., AbdulRahman A.A., Ali A.A., Hutham M.S., Ameera S.M., Salam D.S., Thamer F.A. 2016c. Biological control of Bipolaris spicifera, Curvularia lunata, Fusarium spp., Nigrospora oryzae, Exserohilum rostratum, Alternaria alternate and Thanatephorus cucumeris on Iraqi rice under laboratory and greenhouse conditions. International Journal of Current Research, 8(5), 30252–30261.
  • 23. Hamdia Z.A.,AbdulRahmanA.A.,AliA.A., Hutham M.S., Ameera S.M., Salam D.S. and Thamer F. A. 2018. Preparation of Compatible Trichoderma spp. Inoculant to Control Thanatephorus cucumeris , Fusarium spp., Curvularia lunata and Alternaria tenuissima under Greenhouse Conditions. International Journal of Current Advanced Research, 7(1), 11011–11019. DOI: http://dx.doi.org/10.24327/ijcar.2018. 11019.1895.
  • 24. Hamdia Z.A., Wafaa H.H., Hutham M.S., Abdul Rahman A.A., Hadi M.A. 2020. Efficiency of 10 Compatible Isolates of Trichoderma spp. Against Rice Pathogens under Laboratory Conditions. Trends in Applied Sciences Research, 15(1), 1–13. http://dx.doi.org/10.3923/tasr.2020.1.13.
  • 25. Kasfi K., Taheri P., Jafarpour B., Tarighi S. 2018. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Spanish Journal of Agricultural Research, 16(1), 23.
  • 26. Köhl J., Scheer C., Holb I.J., Masny S., Molhoek W. 2015. Toward an integrated use of biocontrol control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Disease, 99(4), 535–543.
  • 27. Kurtzman C.P., Suzuki M. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience, 51, 2–14.
  • 28. Leylaie S., Zafari D. 2018. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophyticTrichoderma species from Vinca plants. Frontiers in microbiology, 9, 1484.
  • 29. Mojica-Marin V., Luna-Olvera H. A., Sandoval-Corondo C.F., Pereyra-Alferez P., Morales-Ramos L. H., Hernandez-Luna C.E., Alvarado-Gomez O. G. 2008. Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper.African Journal of Biotechnology, 7(9):127–1276.
  • 30. Ncediwe P. 2016. Integrated Management of Early Blight of Tomato Caused by Alternaria solani. Master thesis. Plant Pathology-College of Agriculture, Engineering and Science. University of KwaZuluNatal. Pietermaritzburg, Republic of South Africa.
  • 31. Nur A.Z., Noor A.B. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2):168–178. https://doi.org/10.1016/j.aoas.2020.09.003.
  • 32. Segers F.J.J., Van Laarhoven K.A., Huinink H.P., Adan O.C.G., Wösten H.A.B., Dijksterhuis J. 2016. The indoor fungus Cladosporium halotolerans survives humidity dynamics markedly better than Aspergillus niger and Penicillium rubens despite less growth at lowered steady-state water activity. Appl. Environ. Microbiol. 82, 5089–509.
  • 33. Shahbazi S., Askari H., Naseripour T. 2014. Chitinolytic enzymes production by different strains of Trichoderma and investigation of their antagonistic interactions against soil borne pathogens. International Journal of Agriculture and Crop Sciences, 7(8),472.
  • 34. Titiya C.H., Eakaphun B., Nisa W., Tipaporn S. 2007. Screening of Bacillus spp. Suppressing the infection of Trichoderma sp. Mushroom cultivation. KMITL Journal of Science and Technology, 7, 19–27.
  • 35. Woltz S.S., Arthur W.E. 1973. Fusarium wilt of chrysanthemum, effect of nitrogen source and lime on disease developmenrt. PhytopatholoGry, 63(1), 155–157.
  • 36. Zajc J., Gostinčar C., Černoša A., Gunde-Cimerman N. 2019. Stress-tolerant yeasts: opportunistic pathogenicity versus biocontrol potential. Genes, 10(1), 42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b64437b-fc91-457a-96be-1226097ad6e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.