Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Olive stone waste one of the biomass sorbents which was investigated to remove various aqueous metal ions especially heavy metals. This research aims to explore the data achieved from a batch studies of single bio-sorbent system for removal of lead metal ions Pb2+ by using Jordanian olive stone waste (OSW). The study investigated the effects of contact time, system pH, initial concentration of adsorbate, and adsorbent dose on removal of lead ions. Findings indicated that the suitable pH is of 6.8 for maximum removal of 82.5% of the initial concentration of 9 mg/L at temperature of 25 ±1 °C for adsorbent dose of 1-gram sorbent per 0.25 liters of solution. The equilibrium biosorption data have been analyzed to identify the biosorption isotherm and kinetics adsorption rates for the removal of lead ions by biosorbent (OSW) using commonly well-known adsorption isotherm models; Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich and Pseudo First Order, Pseudo Second Order, Elovich, and Intraparticle Diffusion models, respectively. Findings show that data were fitted well according to Freundlich isotherm adsorption model, while, the data were fitted the Pseudo First Order reaction in case of kinetics adsorption models’ investigations. In conclusion, the adsorption rates in single system said that the processes are very fast and approved that the process is definitely adsorption and represented by Freundlich isotherm adsorption and pseudo second-order reaction models with high correlation coefficients equal approximately 1.
Czasopismo
Rocznik
Tom
Strony
114--128
Opis fizyczny
Bibliogr. 78 poz., rys., tab.
Twórcy
autor
- Faculty of Engineering and Design, Middle East University, Amman, 11831, Jordan
Bibliografia
- 1. Abbas S. T, Mustafa M Al-Faize A. Z, Raheem A. Z, (2013). Adsorption of Pb2 + and Zn2 + ion from oil wells onto activated carbon produced from Rice Husk in batch adsorption process. J Chem Pharm Res., 4, 240–250.
- 2. Abdolalia A., W. S. Guoa, H. H. Ngoa, S. S. Chenb, N. C. Nguyenb, K. L. Tungc, (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresource Technology, 160, 57–66. doi:10.1016/j.biortech.2013.12.037.
- 3. Abdulkarim M, Al-Rub F. A. (2003). Adsorption of lead Ions from Aqueous Solution onto Activated Carbon and Chemically-modified Activated Carbon Prepared from Date Pits. Dept. of Chemical & Petroleum Engineering, UAE University, P.O. Box 17555, Al-Ain, UAE. https://doi.org/10.1260/026361704323150908.
- 4. Ahmaruzzaman M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interf. Sci., 166, 36. doi: 10.1016/j.cis.2011.04.005.
- 5. Albadarin A. B, Mangwandi Ch. (2015). Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. Journal of Environmental Management, 164(1), 86–93, https://doi.org/10.1016/j.jenvman.2015.08.040.
- 6. Albayati T, Doyle, A. (2014). SBA-15 supported bimetallic catalysts for enhancement isomers production during n-heptane decomposition. International Journal of Chemical Reactor Engineering, 12(1), 345–354. https://doi.org/10.1515/ijcre-2013-0120.
- 7. Albayati, T. M. N, Wilkinson, S. E, Garforth, A. A, Doyle, A. M. (2014). Heterogeneous Alkane Reactions over Nanoporous Catalysts. Transp. Porous Media, 104(2), 315–333. https://doi.org/10.1007/s11242-014-0336-1.
- 8. Alghamdi A. A, Al-Odayni A. -B, Saeed W. S, Al-Kahtani A, Alharthi F. A, Aouak T. (2019). Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials, 12(12). https://doi.org/10.3390/ma12122020.
- 9. Al-Ghouti M. A, Da’ana D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
- 10. Al-Meshragi M, Ibrahim H. G, Aboabboud M. M. (2008). Equilibrium and Kinetics of Chromium Adsorption on Cement Kiln Dust. Proceedings of the World Congress on Engineering and Computer Science 2008 WCECS 2008, October 22 - 24, 2008, San Francisco, USA.
- 11. Al Shaweesh M. A, Awad A, Al Kabariti D, Al Hwaiti M. S, Al Kashman O. A, Khafaga A. F, Abd El Hack M. E, Adday F. A. (2023). Dephenolization and discoloration of olive mill wastewater using coagulation, filtration, and hydrogen peroxide oxidation. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04578-x.
- 12. Alslaibi T. M, Abustan I, Ahmad M. A, Foul A. A. (2013). Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. J Chem Technol Biotechnol., 88, 2141–2151 doi.10.1002/jctb.4073.
- 13. Amar M. B, Walha K., Salvadó V. (2020). Evaluation of olive stones for Cd(II), Cu(II), Pb(II) and Cr(VI) biosorption from aqueous solution: equilibrium and kinetics. International Journal of Environmental Research. https://doi.org/10.1007/s41742-020-00246-5.
- 14. Awad A. (2024). Removal efficiency, metal uptake, and breakthrough curve of aqueous lead ions removal using olive stone waste. Results in Engineering, 22, 2590–1230, https://doi.org/10.1016/j.rineng.2024.102311.
- 15. Ayawei N, Ekubo A. T, Wankasi D, Dikio E. D, (2015). Adsorption of congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies. Oriental Journal of Chemistry, 31(30), 1307–1318.
- 16. Babic B. M, Milonjic S. K, Polovina M. J, Cupic S, Kaludjerovic B. V. (2002). Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon, 40, 1109, doi:10.1016/S0008-6223(01)00256-1.
- 17. Basso M. C, Cerrella E. G, Cukierman A. L. (2002). Activated carbons developed from a rapidly renewable biosource for removal of cadmium(II) and nickel(II) ions from dilute aqueous solutions. Industrial and Engineering Chemistry Research, 41(2), 180–189. https://doi.org/10.1021/ie010664x.
- 18. Begum S A. S, Tharakeswar Y, Kalyan Y, Naidu G. R. (2015). Biosorption of Cd(II), Cr(VI) & Pb(II) from aqueous solution using Mirabilis jalapa as Adsorbent. Journal of Encapsulation and Adsorption Sciences, 5, 93–104. http://dx.doi.org/10.4236/jeas.2015.52007.
- 19. Bohli T, Fiol N, Villaescusa I, Ouederni A. (2013). Adsorption on activated carbon from olive stones: kinetics and equilibrium of phenol removal from aqueous solution. J Chem Eng Process Technol 4: 165. doi:10.4172/2157-7048.1000165.
- 20. Bohli T, Ouederni A, Fiol B. N, Villaescusa B. I. (2015). Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. International Chemical Engineering Congress 2013, Comptes Rendus Chimie, C. R. Chimie, 18(1), 88-99, 2015, http://dx.doi.org/10.1016/j.crci.2014.05.009.
- 21. Bohli T, Ouederni A, Villaescusa I. (2017). Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions. Euro-Mediterr J Environ Integr. https://doi.org/10.1007/s41207-017-0030-0.
- 22. Brown P, Jefcoat I. A, Parrish D, Gill, S, Graham, E. 2000. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 4, 19–29. https://doi.org/10.1016/S1093-0191(00)00004-6.
- 23. Calace N, Nardi E, Petronio B. M, Pietroletti. (2002). Adsorption of phenols by papermill sludges, Environmental Pollution, 118(3), 315-319, https://doi.org/10.1016/S0269-7491(01)00303-7.
- 24. Calero M, Hernáinz F, Blázquez G, Martín-Lara M. A, Tenorio G. (2009). Biosorption kinetics of Cd(II), Cr(III) and Pb(II) in aqueous solutions by olive stone. Brazilian Journal of Chemical Engineering, 26(02), 265–273. https://doi.org/10.1590/S0104-66322009000200004.
- 25. Celebi O, Uzum C, Shahwan T, Erten H. N. (2007). A radiotracer study of the adsorption behavior of aqueous Ba2 + ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials, 148(3), 761–767.
- 26. Crini, G. and Badot, P. M. (2008). Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Polymer Science, 33(4), 399–447
- 27. Cui X, Fang S, Yao Y, Li T, Ni Q, Yang X, He Z. (2016). Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ, 562, 517–525.
- 28. Depci, T, Kul, A. R, Onal, Y. (2012) Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from van apple pulp: study in single-and multi-solute systems. Chemical Engineering Journal, 200–202, 224–246. http://dx.doi.org/10.1016/j.cej.2012.06.077.
- 29. El-Khaiary M. I. (2008). Least-squares regression of adsorption equilibrium data: comparing the options. Journal of Hazardous Materials, 158(1), 73–87.
- 30. Elmorsi T. M. (2011). Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. Journal of Environmental Protection, 2(6),817–827.
- 31. Esalah O. J, Weber M. E, Vera J. H. (2000). Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can. J. Chem. Eng., 78, 948–954. https://doi.org/10.1002/cjce.5450780512.
- 32. Firmansyah M. L, Rizki I. N, Amalina I, Jalil A A, Ullah N. (2024). Recovery of precious metals from mobile phone waste: Studies on leaching and adsorption by functionalized activated carbon. Results in Engineering, 22, 102011. https://doi.org/10.1016/j.rineng.2024.102011.
- 33. Gao Y, Aliques Tomas Mdel C, Garemark J, Sheng X, Berglund L, Li Y (2021). Olive stone delignification toward efficient adsorption of metal ions. Front Mater., 8, 605931. https://doi.org/10.3389/fmats.2021.605931.
- 34. Gao Z, Bandosz T. J, Zhao Z, Han M, Qiu J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater, 167, 357–365, https://doi.org/10.1016/j.jhazmat.2009.01.050.
- 35. Goyal, M, Ratten, V. K, Aggarwal, D, Bansal, R. C. (2001). Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids Surf. 190, 229. doi:10.1016/S0927-7757(01)00656-2.
- 36. Guerrero-Coronilla, I, Morales-Barrera, L, Cristiani-Urbina, E. (2015). Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. Journal of Environmental Management 152, 99–108. doi: 10.1016/j.jenvman.2015.01.026.
- 37. Gunay A, Arslankaya E, Tosun I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1–2), 362–371.
- 38. Guo J.-Z, Li B, Liu L, Lv K. (2014). Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere, 111, 225–231. doi: 10.1016/j.chemosphere.2014.03.118.
- 39. Hegazi H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282, https://doi.org/10.1016/j.hbrcj.2013.08.004.
- 40. Johns, M. M, Marshall, W. E, Toles, C. A. (1999). The effect of activation method on the properties of pecan shell‐activated carbons. J. Chem. Technol. Biotechnol., 74, 1037, doi:10.1002/(SICI)1097-4660(199911)74:11<1037:AID-JCTB160>3.0.CO;2-O.
- 41. Johnson T. A, Jain N, Joshi H. C, Prasad S, (2008). Agricultural and agro-processing wastes as low-cost adsorbents for metal removal from wastewater: a review. J Sci Ind Res., 67: 647–658.
- 42. Kawarada K., Haneishi K., Iida T. (2005). Pore structure and performance for drinking water treatment of activated carbon prepared from sugi thinning from water source forest in Tokyo. Wood Ind., 60, 398.
- 43. Khalfaoui M, Knani S, Hachicha M.A, Ben Lamine A. (2003). New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, Journal of Colloid and Interface Science, 263(2), 350–356. https://doi.org/10.1016/S0021-9797(03)00139-5.
- 44. King, P, Rakesh, N, Beenalahari, S, Kumar, Y. P. Prasad, V. S. R. K. (2007). Removal of lead from aqueous solution using Syzygium cumini L: equilibrium and kinetic studies. Journal of Hazardous Materials, 142(1–2), 340–347.
- 45. Kobya, M, Demibas, E, Senturk, E, Ince M. (2005). Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone. Bioresources Technology, 96(13), 1518–1521. doi:10.1016/j.biortech.2004.12.005.
- 46. Kong L, Adidharma H. (2019). A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms. Chemical Engineering Journal, 375, 122112. doi:10.1016/j.cej.2019.122112.
- 47. Kumar D, Schumacher K, du Fresne von Hohenesche C, Grün M, Unger K. K. (2001). MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 109–116. https://doi.org/10.1016/S0927-7757(01)00638-0.
- 48. Li Q, Zhai J, Zhang W, Wang M and Zhou J. (2007). Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater, 141, 163–167. doi: 10.1016/j.jhazmat.2006.06.109.
- 49. Magriotis Z. M, Vieira S. S, Saczk A.A, Santos N. A. V, Stradiotto N. R. (2014). Removal of dyes by lignocellulose adsorbents originating from biodiesel production. Journal of Environmental Chemical Engineering, 2, 2199–2210. https://doi.org/10.1016/j.jece.2014.09.012.
- 50. Mahdi, A, Ali, N, Kalash, K, Salih, I, Abdulrahman, M, Albayati, T. (2023). Investigation of equilibrium, isotherm, and mechanism for the efficient removal of 3-nitroaniline dye from wastewater using mesoporous material MCM-48. Progress in Color, Colorants and Coatings, 16(4), 387–398. https://doi:10.30509/pccc.2023.167111.1205.
- 51. Mahmoud M. A. (2016). Kinetics studies of uranium sorption by powdered corn cob in batch and fixed bed system. Journal of Advanced Research, 7(1), 79–87. doi: 10.1016/j.jare.2015.02.004.
- 52. Maleki A, Mahvi A. H, Ebrahimi R, Khan J. (2010). Evolution of barley straw and its ash in removal of phenol from aqueous system. Word Applied Sciences Journal., 8, 369–373.
- 53. Martín-Lara M. A, Calero de Hoces M, Ronda Gálvez A, Pérez Muñoz A, Trujillo Miranda M. C. (2016). Assessment of the removal mechanism of hexavalent chromium from aqueous solutions by olive stone. Water Sci Technol., 73, 2680–2688. https://doi. org/10.2166/wst.2016.081.
- 54. Mitic-Stojanovic D. L, Zarubica A, Purenovic M, Boji D, Andjelkovic T, Lj Bojic A. (2011). Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by Lagenaria vulgaris shell. Water SA, 37(3). http://www.wrc.org.za
- 55. Nakano Y, Takeshita K, Tsutsumi T. (2001). Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Res., 35, 496–500. https://doi.org/10.1016/S0043-1354(00)00279-7.
- 56. Nworie F. S, Nwabue F.I, Oti W, Mbam E1, Nwali, B. U. (2019). Removal of methylene blue from aqueous solution using activated rice husk biochar: adsorption isotherms, kinetics, and error analysis. J. Chil. Chem. Soc., 64(1). http://dx.doi.org/10.4067/s0717-97072019000104365.
- 57. Othman M. S, Sheikh Hussin S. A, Rambli A, Zahid Z. (2019). equilibrium isotherm models for the adsorption of methylene blue from wastewater. Journal of Physics: Conference Series 1366, 012033 (ICoAIMS 2019), doi:10.1088/1742-6596/1366/1/012033.
- 58. Piccin J. S, Dotto G. L, Pinto L. A. A. (2011). Adsorption isotherms and thermochemical data of Fd&C Red N° 40 binding by chitosan. Federal University of Rio Grande, Brazil, January 15, 2011.
- 59. Porpuri S. R, Vijaya Y, Boddu Abburi V. M. K. (2009). Adsorptive removal of copper and nickel ions from water chitosan coated PVC beads. Bioresour Technol 100, 194–199.
- 60. Rahmani M, Sasani M. 2016. Evaluation of 3A zeolite as an adsorbent for the decolorization of rhodamine B dye in contaminated waters. Applied Chemistry, 11(41), 83–90. https://doi.org/10.22075/CHEM.2016.2279.
- 61. Rao, R. A. K, Khan, M. A, Rehman, F. (2011). Batch and column studies for the removal of lead (II) ions from aqueous solution onto lignite. Adsorption Science and Technology, 29(1), 83–98. https://doi.org/10.1260/0263-6174.29.1.83.
- 62. Ringot D, Lerzy B, Chaplain K, Bonhoure J.-P, Auclair E, and Larondelle Y. (2007). In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresource Technology, 98(9), 1812–1821.
- 63. Rodríguez-Gutiérrez, G., Rubio-Senent, F., Lama-Muñoz, A., García, A., Fernández-Bolaños, J. 2014. Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: binding of water, oil, bile acids, and glucose. J. Agric. Food Chem. 62(36), 8973–8981. doi:10. 1021/jf502062b.
- 64. Saadh M.J., Hassan W.H., Nemah A.K., Jameel M.K., Sharma P., Kumar A., M.A. Hasan M.A., Islam S., Zainul R., (2024). Removal of erythrosine B dye from wastewater using Ca2C and Ti2C MXenes: A theoretical study. Journal of Molecular Liquids, 411, 125784, https://doi.org/10.1016/j.molliq.2024.125784.
- 65. Saka C, Sahin O, Küçük M. M (2012). Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol., 9, 379–394. https://doi.org/10.1007/s13762-012-0041-y.
- 66. Sangi M. R, Shahmoradi A, Zolgharnein J, Azimi G. H, Ghorbandoost M. (2008). Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. Journal of Hazardous Materials, 155(3) 513–522. https://doi.org/10.1016/j.jhazmat.2007.11.110.
- 67. Sari, A., Tuzen, M., Uluozlu, O. D. and Soylak, M., (2007). Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochemical Engineering Journal, 37(2), 151– 158.
- 68. Sarwar A, Wang J, Riaz N, Khan M. S, Zeb B. S, Khan I. A, Akmal M, Khalid A, Khan A, Al-Harrasi A, Mahmood Q. (2024). Optimizing the fluoride removal from drinking water through adsorption with mesoporous magnetic calcite nanocomposites. Results in Engineering, 22. 102100. https://doi.org/10.1016/j.rineng.2024.102100.
- 69. Şeker A, Shahwan T, Eroğlu A. E., Yılmaz S, Demirel Z, Dalay M. C. (2008). Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis. Journal of Hazardous Materials, 154(1–3), 973–980. https://doi.org/10.1016/j.jhazmat.2007.11.007.
- 70. Shahbeig H, Bagheri N, Ghorbanian S. A, Hallajisani A, and Poorkarimi S. (2013). A new adsorption isotherm model of aqueous solutions on granular activated carbon. World Journal of Modelling and Simulation, 9(4), 243–254.
- 71. Sreejalekshmi K. G, Krishnan K. A, Anirudhan T. S (2009). Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: kinetic and equilibrium isotherm studies. J Hazard Mater, 161, 1506–1513, https://doi.org/10.1016/j.jhazmat.2008.05.002.
- 72. Suresh Jeyakumar R. P, Chandrasekaran V. (2014). Adsorption of lead (II) ions by activated carbons prepared from marine green algae: equilibrium and kinetics studies. Int J Ind Chem., 5(10), https://doi.org/10.1007/s40090-014-0010-z.
- 73. Theivarasu C, Mylsamy S. (2011). Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma cacao) shell – A kinetic and equilibrium studies. E-Journal of Chemistry, 8(1), S363–S371.
- 74. Travis C. C, Etnier E. L. (1981). A survey of sorption relationships for reactive solutes in soil. Journal of Environmental Quality, 10(1), 8–17.
- 75. Uluozlu, O. D., Sari, A., Tuzen, M, Soylak, M. (2008). Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technology, 99(8), 2972–2980.
- 76. Verma A, Chakraborty S, Basu J. K. (2006). Adsorption study of hexavalent chromium using tamarind HullBased adsorbents. Separation and Purification Technology, 50, 336–341. http://dx.doi.org/10.1016/j.seppur.2005.12.007.
- 77. Vijayaraghavan K., Padmesh T. V. N., Palanivelu K., and Velan M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1–3), 304–308.
- 78. Wang M.-X, Zhang Q.-L, Yao S.-J. (2015). A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chemical Engineering Journal, 259, 837–844. https://doi.org/10.1016/j.cej.2014.08.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b628e33-6d08-4545-a09b-69b9e5a275ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.