Identyfikatory
Warianty tytułu
Positive stable realization problem for linear continuous-time fractional-order systems with symmetric system Metzler matrix
Języki publikacji
Abstrakty
Podano warunki dodatniości i stabilności liniowych układów ciągłych niecałkowitego rzędu. Sformułowano problem realizacji dodatnich stabilnych liniowych układów ciągłych niecałkowitego rzędu z macierzą systemową symetryczną Metzlera. Zaproponowano metodę sprowadzania macierzy stanu w postaci kanonicznej Frobeniusa do postaci symetrycznej stabilnej Metzlera. Metodę zobrazowano przykładem numerycznym.
A dynamical system is called a fractional-order system if its state equations are given by fractional-order derivative of the state vector. Using that theory, more precise mathematical models of systems can be obtained. A dynamical system is called positive if its all inputs, outputs, state variables and initial conditions are nonnegative. Variety of models having positive behavior can be found in engineering, biology, economics etc. Conditions for positivity and stability of linear continuous-time fractional-order systems are presented in the paper. A positive stable realization problem for linear continuous-time fractional-order systems with symmetric system Metzler matrix is formulated. The method for finding the realization is given. The problem is solved and conditions for the existence of the realization are established. The paper is organized as follows. In Section 2 the conditions for internal positivity and stability of linear continuous-time fractional-order systems are given. This section also contains the formulation of the positive stable realization problem for linear continuous-time fractional-order systems with symmetric system Metzler matrix. In Section 3 the procedure for computation of the realization is given. An example illustrating the method proposed is presented in Section 4. Section 5 contains the concluding remarks.
Wydawca
Czasopismo
Rocznik
Tom
Strony
822--825
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Politechnika Białostocka, Wydział Elektryczny, ul. Wiejska 45d, 15-351 Białystok
autor
- Politechnika Białostocka, Wydział Elektryczny, ul. Wiejska 45d, 15-351 Białystok
Bibliografia
- [1] Busłowicz M.: Stability of state-space models of linear continuoustime fractional order systems. Acta Mechanica et Automatica, 2011, vol. 5, no. 2, pp. 15-12.
- [2] Busłowicz M., Kaczorek. T.: Simple conditions for practical stability of positive fractional discrete-time linear systems. Int. J. Appl. Math. Comput. Sci., 2009, vol. 19, no. 2, pp. 263-269.
- [3] Busłowicz M.: Simple analytic conditions for stability of fractional discrete-time linear systems with diagonal state matrix. Bull. Pol. Acad. of Sci., Techn. Sci., 2012, vol. 60, no. 4, pp. 809-814.
- [4] Farina L., Rinaldi S.: Positive Linear Systems, Theory and Applications. J. Wiley, New York 2000.
- [5] Kaczorek T., Sajewski Ł.: Realization Problem for Positive and Fractional Systems. Printing House of Bialystok University of Technology, Białystok 2013.
- [6] Kaczorek T.: Wybrane zagadnienia teorii układów niecałkowitego rzędu. Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2009.
- [7] Kaczorek T.: Positive 1D and 2D Systems. Springer-Verlag, London 2002.
- [8] Kaczorek T.: Positive stable realizations of fractional continuous time linear systems. Int. J. Appl. Math. Comput. Sci., 2011, vol. 21, no. 4, pp. 697-702.
- [9] Kaczorek T.: Positive stable realizations with system Metzler matrices. Archives of Control Sciences, 2011, vol. 21, no. 2, pp. 167-188.
- [10] Kaczorek T.: Computation of positive stable realizations for linear continuous-time systems. Proc. 20th European Conference on Circuit Theory and Design (ECCTD), 2011, pp. 517-520.
- [11] Kaczorek T.: Determination of positive stable realizations for discretetime linear systems. Pomiary Automatyka Robotyka, 2/2012, 317-322.
- [12] Kaczorek T.: Positive stable realizations of discrete-time linear systems. Bull. Pol. Acad. of Sci., Techn. Sci., 2012, vol. 60, no. 3, pp. 605-616.
- [13] Klamka J.: Controllability of dynamical systems. A survey. Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 61, no. 2, 2013, pp. 221-229.
- [14] Oldham K. B., Spanier J.: The Fractional Calculus. Academic Press, New York and London 1974.
- [15] Ostalczyk P.: Zarys rachunku różniczkowo-całkowego ułamkowych rzędów. Teoria i zastosowania w automatyce. Wydawnictwo Politechniki Łódzkiej, Łódź 2008.
- [16] Podlubny I.: Fractional Differential Equations. San Diego: Academic Press, 1999.
- [17] Sajewski Ł.: Positive realization of linear discrete-time fractionalorder systems based on impulse response. Measurements Automation and Monitoring, 2010, vol. 56, no. 5, pp. 404-408.
- [18] Sajewski Ł.: Positive realization of fractional continuous-time linear systems with delays. Measurements Automation and Monitoring, 2012, vol. 58, no. 5, pp. 413-417.
- [19] Sajewski Ł.: Positive realization of fractional discrete-time linear systems with delays. Measurements Automation and Monitoring, 2012, vol. 16, no. 2, pp. 323-327.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b60a32f-d9eb-40a6-998d-320b6d4dcb04