PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A two-dimensional study to aid the prototype designing of mono-mode microwave blood warmer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
This meticulous analysis was performed to guide in the designing of a prototype mono-mode microwave blood warmer. The interaction of two-dimensional cylindrical blood samples with the microwave was performed through two different techniques i.e., lateral and radial irradiations. The study found the preference for interaction techniques corresponding to different frequencies, intensities, sample sizes and procedure durations. The study of the areal positioning of power and temperature at specific peak points generated the information on warming rate and thermal homogeneity inside the sample. High warming rate along with low thermal non-homogeneity were the chosen criteria to decide the requirement of rotation during the warming procedure. At the frequency of 915 MHz, no rotation was recommended for samples irrespective of sizes for optimal warming. Rotation for small and large samples and no rotation for medium sized samples were recommended to achieve homogenously warmed human blood samples at the frequency of 2450 MHz. Specific recommendations for different case studies were also made with respect to the sample size, radiation intensity and procedure duration to draw reciprocity amongst them. Considering all the aspects, the present work recommended an efficient way for designing of a prototype for enhanced microwave facilitated intravenous fluid warmer.
Rocznik
Strony
147--–157
Opis fizyczny
Bibliogr. 24 poz., il.
Twórcy
  • Indian Institute of Technology Patna, Department of Chemical and Biochemical Engineering, Bihta, Patna – 801106, India
  • Indian Institute of Technology Patna, Department of Chemical and Biochemical Engineering, Bihta, Patna – 801106, India
Bibliografia
  • 1. Ayappa K.G., Davis H.T., Davis E.A., Gordon J., 1992. Two-dimensional finite element analysis of microwave heating. AIChE J., 38, 1577–1592. DOI: 10.1002/aic.690381009.
  • 2. Boyan C.P., 1964. Cold or warmed blood for massive transfusions. Annals Surgery, 160, 282–286. DOI: 10.1097/00000658-196408000-00016.
  • 3. Custer B., Zou S., Glynn S.A., Makani J., Tayou Tagny C., El Ekiaby M., Sabino E.C., Choudhury N., Teo D., Nelson K., Peprah E., 2018. Addressing gaps in international blood availability and transfusion safety in low-and middle-income countries: A NHLBI workshop. Transfusion, 58, 1307–1317. DOI: 10.1111/trf.14598.
  • 4. Frazier S.K., Higgins J., Bugajski A., Jones A.R., Brown M.R., 2017. Adverse reactions to transfusion of blood products and best practices for prevention. Crit. Care Nurs. Clin. North Am., 29, 271–290. DOI: 10.1016/j.cnc.2017.04.002.
  • 5. Herron D.M., Grabowy R., Connolly R., Schwaitzberg S.D., 1997. The limits of bloodwarming. Maximally heating blood with an inline microwave bloodwarmer. J. Trauma Acute Care Surg., 43, 219-228. DOI: 10.1097/00005373-199708000-00003.
  • 6. Hirsch J., Menzebach A., Welters I.D., Dietrich G.V., Katz N., Hempelmann G., 2003. Indicators of erythrocyte damage after microwave warming of packed red blood cells. Clin. Chem., 49, 792–799. DOI: 10.1373/49.5.792.
  • 7. Keller J.B., Givoli D., 1989. Exact non-reflecting boundary conditions. J. Comput. Phys., 82, 172–192. DOI: 10.1016/0021-9991(89)90041-7.
  • 8. Komarov V., Wang S., Tang J., 2005. Permittivity and measurements. Encyclopedia of RF and Microwave Engineering, 1–20. DOI: 10.1002/0471654507.eme308.
  • 9. Kumari S., Samanta S.K., 2020. 1D study on microwave assisted warming of human blood with varied ceramic and composite supports. J. Indian Chem. Soc., 97, 379–383.
  • 10. Kumari S., Samanta S.K., 2022. The effect of temperature and additives on the dielectric behavior of human whole blood, its different components and cell suspensions. IEEE Trans. Instrum. Meas., 71, 1-9, 1001809. DOI: 10.1109/TIM.2022.3141078.
  • 11. Kumari S., Samanta S.K., 2022. The evolution of microwave assisted thermal processing of pre-transfusion human blood: A review. Materials Today: Proceedings, 57, 1877-1883. DOI: 10.1016/j.matpr.2022.01.196.
  • 12. Lubner M.G., Brace C.L., Hinshaw J.L., Lee F.T., 2010. Microwave tumor ablation: Mechanism of action, clinical results, and devices. J. Vasc. Interventional Radiol., 21(SUPPL. 8), S192–S203. DOI: 10.1016/j.jvir.2010.04.007.
  • 13. Nair S.S., Sreedevi V., Nagesh D.S., 2021. Warming of blood and intravenous fluids using low-power infra-red light-emitting diodes. J. Med. Eng. Technol., 45, 614–626. DOI: 10.1080/03091902.2021.1936675.
  • 14. Poder T.G., Pruneau D., Dorval J., Thibault L., Fisette J., Bédard S.K., Jacques A., Beauregard P., 2016. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity. Vox Sanguinis, 111, 341–349. DOI: 10.1111/vox.12423.
  • 15. Poder T.G., Pruneau D., Dorval J., Thibault L., Fisette J.-F., Bédard S.K., Jacques A., Beauregard P., 2016. Pressure infusion cuff and bloodwarmer during massive transfusion: An experimental study about hemolysis and hypothermia. PLOS ONE, 11, e0163429. DOI: 10.1371/journal.pone.0163429.
  • 16. Rosen A., Stuchly M.A., Vander Vorst A., 2002. Applications of RF/microwaves in medicine. IEEE Trans. Microwave Theory Tech., 50, 963–974. DOI: 10.1109/22.989979.
  • 17. Samanta S.K., Basak T., 2008. Theoretical analysis of efficient microwave processing of oil-water emulsions attached with various ceramic plates. Food Res. Int., 41, 386–403. DOI: 10.1016/j.foodres.2008.01.003.
  • 18. Samanta S.K., Basak T., 2009. Efficient microwave processing of oil-water emulsion cylinders with lateral and radial irradiations. Food Res. Int., 42, 1337–1350. DOI: 10.1016/j.foodres.2009.06.010.
  • 19. Samanta S.K., Basak T., 2010. Efficient processing of oil-water emulsions confined within 2D cylinders with various microwave irradiations: Role of metallic annulus. Food Res. Int., 43, 148–166. DOI: 10.1016/j.foodres.2009.09.015.
  • 20. Schwaitzberg S.D., Allen M.J., Connolly R.J., Grabowy R.S., Carr K.L., Cleveland R.J., 1991. Rapid in-line blood warming using microwave energy: preliminary studies. J. Investigative Surg., 4, 505–510. DOI: 10.3109/08941939109141182.
  • 21. Smith C.E., Wagner K.G., 2008. Principles of fluid and blood warming in trauma. International Trauma Care (ITACCS), 18, 71–79.
  • 22. Storch E.K., Custer B.S., Jacobs M.R., Menitove J.E., Mintz P.D., 2019. Review of current transfusion therapy and blood banking practices. Blood Rev., 38, 100593. DOI: 10.1016/j.blre.2019.100593.
  • 23. Vrba J., 2005. Medical applications of microwaves. Electromagn. Biol. Med., 24, 441–448. DOI: 10.1080/15368370500382214.
  • 24. Zimrin A.B., Hess J.R., 2009. Current issues relating to the transfusion of stored red blood cells. Vox Sanguinis, 96, 93–103. DOI: 10.1111/j.1423-0410.2008.01117.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b5fd8c8-74ee-46a9-adda-23d1081e0e57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.