PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Planning repetitive construction processes to improve robustness of schedules in risk environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda harmonogramowanie powtarzalnych procesów budowlanych zwiększająca odporność harmonogramów w warunkach ryzyka
Języki publikacji
EN
Abstrakty
EN
Most scheduling methods used in the construction industry to plan repetitive projects assume that process durations are deterministic. This assumption is acceptable if actions are taken to reduce the impact of random phenomena or if the impact is low. However, construction projects at large are notorious for their susceptibility to the naturally volatile conditions of their implementation. It is unwise to ignore this fact while preparing construction schedules. Repetitive scheduling methods developed so far do respond to many constructionspecific needs, e.g. of smooth resource flow (continuity of work of construction crews) and the continuity of works. The main focus of schedule optimization is minimizing the total time to complete. This means reducing idle time, but idle time may serve as a buffer in case of disruptions. Disruptions just happen and make optimized schedules expire. As process durations are random, the project may be delayed and the crews’ workflow may be severely affected to the detriment of the project budget and profits. For this reason, the authors put forward a novel approach to scheduling repetitive processes. It aims to reduce the probability of missing the deadline and, at the same time, to reduce resource idle time. Discrete simulation is applied to evaluate feasible solutions (sequence of units) in terms of schedule robustness.
PL
Terminowa i sprawna realizacja przedsięwzięć budowlanych oraz redukcja czasu ich wykonania wpływają na efektywność ekonomiczną inwestycji i działalności gospodarczej wielu podmiotów zaangażowanych w proces inwestycyjny. Cechą specyficzną produkcji budowlanej jest znaczna podatność na oddziaływanie zmiennych warunków realizacji, dlatego też przy harmonogramowaniu nie powinno się pomijać wpływu oddziaływania czynników ryzyka. Wiele przedsięwzięć budowlanych składa się z powtarzalnych procesów, są to m.in. budowy osiedli domów mieszkalnych, budowy obiektów wysokich i wielosekcyjnych, dróg, tuneli, instalacji itd. W celu redukcji czasu ich wykonania obiekty te dzieli się na działki robocze, na których powtarzane jest wykonywanie procesów przez brygady robocze o odpowiednich kwalifikacjach. W przypadku, gdy działki różnią się wielkością i nie występuje zależność wprost proporcjonalna pomiędzy ich wielkością i pracochłonnością robót (jednakowa dla każdego ich asortymentu), na czas realizacji przedsięwzięcia oraz na inne parametry wpływa kolejność zajmowania działek przez brygady. W artykule została przedstawiona metoda wyboru optymalnego harmonogramu robót powtarzalnych realizowanych na działkach niejednorodnych w warunkach ryzyka i optymalnej permutacji działek roboczych. Analizowany problem opisano za pomocą modelu programowania stochastycznego z funkcją celu minimalizującą łączne straty finansowe spowodowane niedotrzymaniem terminu dyrektywnego przedsięwzięcia, wydłużeniem okresu zatrudnienia brygad i czasu realizacji poszczególnych obiektów, na skutek przestojów spowodowanych zjawiskami losowymi. Ze względu na probabilistyczny charakter parametrów rozpatrywanego problemu do jego rozwiązania zaproponowano procedurę bazującą na zastosowaniu metody symulacji komputerowej oraz algorytmów metaheurystycznych lub – w przypadku problemów o małej złożoności z niewielką liczbą działek roboczych – metody przeglądu zupełnego zbioru rozwiązań dopuszczalnych.
Twórcy
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
autor
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • 1. S. AbouRizk, P. Knowles, U.R. Hermann, “Estimating labor production rates for industrial construction activities”, Journal of Construction Engineering and Management 127(6), 502–511, 2001.
  • 2. S.M. Ahmed, R. Ahmed, D.D. Saram, “Risk management trends in the Hong Kong construction industry: a comparison of contractors and owners perceptions” Engineering, Construction and Architectural Management 6 (3): 225–234, 1999.
  • 3. M.I. Al-Khalil, M.A. Al-Ghafly, “Important causes of delay in public utility projects in Saudi Arabia”, Construction Management and Economics 17: 647–655, 1999.
  • 4. Andi, “The importance and allocation of risks in Indonesian construction projects”, Construction Management and Economics 24: 69-80, 2006.
  • 5. D. Arditi, G.T. Akan, S. Gurdamar, “Reasons for delays in public projects in Turkey”, Construction Management and Economics 3: 171–181, 1985.
  • 6. A. Bin Seddeeq, S. Assaf, A. Abdallah, M.A. Hassanain “Time and cost overrun in the Saudi Arabian oil and gas construction industry”, Buildings 9(2):41, 2019.
  • 7. V. Biolek, T. Hanák, “LCC estimation model: a construction material perspective” Buildings, 9(182), 2019..
  • 8. R.I. Carr, W.L. Meyer, “Planning construction of repetitive building units”, Journal of the Construction Division ASCE 100 (3): 403–412, 1974.
  • 9. A.P.C. Chan, D. Scott, A.P.L. Chan, “Factors affecting the success of a construction project”, Journal of Construction Engineering and Management 130(1): 153–155, 2004.
  • 10. D.W.M. Chan, M.M. Kumaraswamy (1999), “Modelling and predicting construction durations in Hong Kong public housing”, Construction Management and Economics 17(3): 351–362, 1999.
  • 11. H. Chtourou, M. Haouari, “A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling”, Computers & Industrial Engineering 55: 183–194, 2008.
  • 12. A. Enshassi, S. Mohamed, Z.A. Mustafa, P.E. Mayer, “Factors affecting labour productivity in building projects in the Gaza Strip”, Journal of Civil Engineering and Management 13(4): 245–254, 2007.
  • 13. A.S.Ezeldin, L.M. Sharara, "Neural networks for estimating the productivity of concreting activities”, Journal of Construction Engineering and Management 132(6): 650–656, 2006.
  • 14. A.S. Faridi, S.M. El-Sayegh, “Significant factors causing delay in the UAE construction industry”, Construction Management and Economics 24: 1167-1176, 2006.
  • 15. A.R. Fayek, A. Oduba, Predicting industrial construction labor productivity using fuzzy expert systems. Journal of Construction Engineering and Management 131(8): 938–941, 2005.
  • 16. J. Fortune, D. White, D., “Framing of project critical success factors by a systems model”, International Journal of Project Management 24: 53–65, 2006.
  • 17. Y. Frimpong, J. Oluwoye, “Significant factors causing delay and cost overruns in construction of ground-water projects in Ghan”, Journal of Construction Research 4 (2): 175–187, 2003.
  • 18. M.E. Georgy, L.-M. Chang, L. Zhang, "Prediction of engineering performance: A neurofuzzy approach", Journal of Construction Engineering and Management 131(5): 548–557, 2005.
  • 19. E .Goldratt, E. 1997. Critical Chain. The North River Press Publishing Corporation, Great Barrington, MA, 1997.
  • 20. M. Habibi, S. Kermanshachi, “Phase-based analysis of key cost and schedule performance causes and preventive strategies. Research trends and implications”, Engineering, Construction and Architectural Management 25(8): 1009–1033, 2018.
  • 21. R.B. Harris, P.G. Ioannou, “Scheduling projects with repeating activities”, Journal of Construction Engineering and Management ASCE 124 (4): 269–278, 1998.
  • 22. Z. Hejducki, “Scheduling model of construction activity with time coupling”, Journal of Civil Engineering and Management 9(4): 284–291, 2003.
  • 23. W. Herroelen, R. Leus, “The construction of stable project baseline schedules”, European Journal of Operational Research 156(3): 550–565, 2004.
  • 24. W. Herroelen, R. Leus, “Robust and reactive project scheduling: A review and classification of procedures” International Journal of Production Research 42 (8): 1599–1620, 2004.
  • 25. W. Herroelen, R. Leus, R., “Project scheduling under uncertainty – Survey and research potentials”, European Journal of Operational Research 165: 289–306, 2005.
  • 26. P. Jaskowski, S. Biruk S., “The Method for Improving stability of construction project schedules through buffer allocation” Technological and Economic Development of Economy 17(3): 429–444, 2011.
  • 27. P. Jaskowski, “Methodology for enhancing reliability of predictive project schedules in construction”, Maintenance and Reliability 17(3): 470–479, 2015
  • 28. D.W. Johnston, “Linear scheduling method for highway construction”, Journal of Construction Engineering and Management ASCE 107 (CO2): 247–260, 1981.
  • 29. M.R.A. Kadir, W.P. Lee, M.S. Jaafar, S.M. Sapuan, A.A.A. Ali, “Factors affecting construction labour productivity for Malaysian residential projects”, Structural Survey 23 (1): 42–54, 2005.
  • 30. P.F. Kaming, P.O. Olomolaiye, G.D. Holt, F.C. Harris, “Factors influencing construction time and cost overruns on high-rise projects in Indonesia”, Construction Management and Economics 15: 83-94, 1997.
  • 31. N.A. Kartam, S.A. Kartam, “Risk and its management in the Kuwaiti construction industry: a contractors’ perspective”, International Journal of Project Management 19: 325–335, 2001.
  • 32. Y.C. Kog, D.K.H. Chua, P. K. Loh, E.J. Jaselskis, “Key determinants for construction schedule performance”, International Journal of Project Management 17(6): 351–359, 1999.
  • 33. E.C. Lim, J. Alum, “Construction productivity: issues encountered by contractors in Singapore”, International Journal of Project Management 13 (1): 51–58, 1995.
  • 34. J.J. O'Brien, “VPM scheduling for high rise buildings”, Journal of the Construction Division ASCE 101 (4): (1975) 895–905, 1975.
  • 35. J. Mbachu, R. Nkado, “Factors constraining successful building project implementation in South Africa”, Construction Management and Economics 25: 39–54, 2007.
  • 36. T.M. Mezher, W. Tawil, “Causes of delays in the construction industry in Lebano”, Engineering, Construction and Architectural Management 5 (3): 252–260, 1980.
  • 37. B. Perera, K. Imriya, K., “Knowledge–based system for construction cost control”, AACE International Transactions IT:101–108, 2003.
  • 38. J.B. Pocock, C. T. Hyun, L. Y. Liu, M. K. Kim, “Relationship between project interaction and performance indicators”, Journal of Construction Engineering and Management 122(2): 165–176, 1996.
  • 39. M. Połoński, K., Pruszyński, “Impact of baseline terms on the course of critical paths and time buffers in the modified Goldratt’s method”, Archives of Civil Engineering 59 (3): 313–320, 2013.
  • 40. R.M. Reda, “RPM: repetitive project modeling”, Journal of Construction Engineering and Management 116 (2): 316– 330, 1990.
  • 41. Z.M. Al Sarraj, “Formal development of line-of-balance technique”, Journal of Construction Engineering and Management 116 (4): 689–704, 1990.
  • 42. P. Shahsavand, A. Marefat, M. Parchamijalal, “Causes of delays in construction industry and comparative delay analysis techniques with SCL protocol”, Engineering, Construction and Architectural Management 25(4): 497–533, 2018.
  • 43. A. Shibnai, K. Salah, “Time and cost overrun in construction projects in Egypt”, URL https://www.researchgate.net/profile/Dr_Abdussalam_Shibani/publication/
  • 44. D. Skorupka, “Identification and initial risk assessment of construction projects in Poland”, Journal of Management in Engineering 24 (3): 120-127, 2008.
  • 45. H. Subramanyan, P.H. Sawant, “Analysis of relationship between time and cost overruns in some infrastructure projects” NICMAR Journal of Construction Management 27(2-3): 5-16 2012.
  • 46. M. Tafazzoli, P. P. Shrestha, “Investigating Causes of Delay in U.S. Construction Projects”, 53rd ASC Annual International Conference: 611–621, 2017.
  • 47. A. Taroun, J. B. Yang, D. Lowe, “Construction risk modeling and assessment: insights from a literature review”, Journal of the Built & Human Environment 4(1): 87–97, 2011.
  • 48. W.Y. Thabet, Y.J. Beliveau, “HVLS: horizontal and vertical logic scheduling for multistory projects”, Journal of Construction Engineering and Management ASCE 120(4): 875–892, 1994.
  • 49. K. Yogeswaran, M.M. Kumaraswamy, D.R.R. Miller, “Claims for extension of time in civil engineering projects”, Construction Management and Economics 16: 283–293, 1998.
  • 50. T.M. Zayed, D.W. Halpin, “Pile construction productivity assessment”, Journal of Construction Engineering and Management 131(6): 705–714, 2005.
  • 51. V. Žujo, D. Car-Pušić, V. Žileska-Pančovska, M. Ćećez, “Time and cost interdependence in water supply system construction projects”, Technological and Economic Development of Economy 23(6): 895-914. 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b5c45cd-9e92-4d60-8758-14e3cdb4fa0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.