Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Application of chemometric methods foe voltammetric profiling of food
Języki publikacji
Abstrakty
The development of society and the rise in consumer awareness generate the need for rapid and precise analysis of food products to ensure their high quality. Consumers are increasingly paying attention to the origin, composition, and production processes of food. Heightened competition among producers and rising production costs lead to serious challenges, such as food product adulteration to lower prices and maximize profits. This study presents results of analysis of a wide range of food products, including wines, whiskies, apple juices, honey, isotonic drinks, and plant-based milks. The research focused on profiling these samples and identifying potential issues, such as the presence of undesirable additives. The registration of voltammetric profiles was made possible through the use of modern working electrodes. As a result of the conducted research, several innovative methods were developed, combining chemical analysis and machine learning strategies that effectively address the identified research problems. Research plans were created to detect adulteration in apple juices and honeys, and predictive models regarding the aging of young wines were defined. Procedures for profiling products such as wines, whiskies, honeys, isotonic drinks, and plant-based milks were also designed. For each of these procedures, a multi-stage optimization of voltammetric profile registration parameters was carried out, and the obtained data underwent advanced signal processing to ensure the highest possible quality of results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
39--58
Opis fizyczny
Bibliogr. 40 poz., fot., rys., wykr.
Twórcy
autor
- Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych, Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo – Hutnicza im. Stanisława Staszica w Krakowie, ul. Mickiewicza 30, 30-059 Kraków
autor
- Katedra Chemii Analitycznej i Biochemii, Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo – Hutnicza im. Stanisława Staszica w Krakowie, ul. Mickiewicza 30, 30-059 Kraków
autor
- Katedra Chemii Analitycznej i Biochemii, Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo – Hutnicza im. Stanisława Staszica w Krakowie, ul. Mickiewicza 30, 30-059 Kraków
autor
- Katedra Chemii Analitycznej i Biochemii, Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo – Hutnicza im. Stanisława Staszica w Krakowie, ul. Mickiewicza 30, 30-059 Kraków
Bibliografia
- [1] Wentzell, P.D.; Brown, C.D. Signal Processing in Analytical Chemistry. In Encyclopedia of Analytical Chemistry; Wiley, 2000; pp. 9764
- [2] Brown, S.D.; Blank, T.B.; Sum, S.T.; Weyer, L.G. Chemometrics. Anal. Chem. 1994, 66, 315
- [3] Wold, S. Chemometrics; What Do We Mean with It, and What Do We Want from It? Chemom. Intell. Lab. Syst. 1995, 30, 109
- [4] Joshi, P.B. Navigating with Chemometrics and Machine Learning in Chemistry. Artif. Intell. Rev. 2023, 56, 9089
- [5] Cetó, X.; Pérez, S.; Prieto-Simón, B. Fundamentals and Application of Voltammetric Electronic Tongues in Quantitative Analysis. TrAC - Trends Anal. Chem. 2022, 157
- [6] Wei, Z.; Yang, Y.; Wang, J.; Zhang, W.; Ren, Q. The Measurement Principles, Working Parameters and Configurations of Voltammetric Electronic Tongues and Its Applications for Foodstuff Analysis. J. Food Eng. 2018, 217, 75
- [7] Leon-Medina, J.X.; Cardenas-Flechas, L.J.; Tibaduiza, D.A. A Data-Driven Methodology for the Classification of Different Liquids in Artificial Taste Recognition Applications with a Pulse Voltammetric Electronic Tongue. Int. J. Distrib. Sens. Networks 2019, 15, 155014771988160
- [8] Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic Tongue and Electronic Nose for Food Quality and Safety. Food Res. Int. 2022, 162, 112214
- [9] Buratti, S.; Benedetti, S.; Scampicchio, M.; Pangerod, E.C. Characterization and Classification of Italian Barbera Wines by Using an Electronic Nose and an Amperometric Electronic Tongue. Anal. Chim. Acta 2004, 525, 133
- [10] Bond, A.M.; Zhang, J.; Gundry, L.; Kennedy, G.F. Opportunities and Challenges in Applying Machine Learning to Voltammetric Mechanistic Studies. Curr. Opin. Electrochem. 2022, 34, 101009
- [11] Molinara, M.; Cancelliere, R.; Di Tinno, A.; Ferrigno, L.; Shuba, M.; Kuzhir, P.; Maffucci, A.; Micheli, L. A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry. Sensors 2022, 22, 8032
- [12] Aslam, R.; Sharma, S.R.; Kaur, J.; Panayampadan, A.S.; Dar, O.I. A Systematic Account of Food Adulteration and Recent Trends in the Non-Destructive Analysis of Food Fraud detection. J. Food Meas. Charact. 2023, 17, 3094
- [13] Ni Mhurchu, C.; Eyles, H.; Jiang, Y.; Blakely, T. Do Nutrition Labels Influence Healthier Food Choices? Analysis of Label Viewing Behaviour and Subsequent Food Purchases in a Labelling Intervention Trial. Appetite 2018, 121, 360
- [14] Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC Trends Anal. Chem. 2016, 85, 123
- [15] Rauber, F.; Campagnolo, P.D.B.; Hoffman, D.J.; Vitolo, M.R. Consumption of Ultra-Processed Food Products and Its Effects on Children’s Lipid Profiles: A Longitudinal Study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116
- [16] Rauber, F.; Da Costa Louzada, M.L.; Steele, E.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008-2014). Nutrients 2018, 10, 587
- [17] Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308
- [18] Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for Multivariate Association between Bioactive Compounds and Functional Properties in Foods: A Critical Perspective. Trends Food Sci. Technol. 2018, 72, 83
- [19] Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.M.; Câmara, J.S. Current Trends and Recent Advances on Food Authenticity Technologies and Chemometric Approaches. Trends Food Sci. Technol. 2019, 85, 163
- [20] Semeniuc, C.A.; Mureșan, V. Spectroscopic, Chromatographic, and Chemometric Techniques Applied in Food Products Characterization. Separations 2023, 10, 55
- [21] Azcarate, S.M.; Martinez, L.D.; Savio, M.; Camiña, J.M.; Gil, R.A. Classification of Monovarietal Argentinean White Wines by Their Elemental Profile. Food Control 2015, 57, 268
- [22] Huang, X.-Y.; Jiang, Z.-T.; Tan, J.; Li, R. Geographical Origin Traceability of Red Wines Based on Chemometric Classification via Organic Acid Profiles. J. Food Qual. 2017, 2017, 1
- [23] Shand, C.A.; Wendler, R.; Dawson, L.; Yates, K.; Stephenson, H. Multivariate Analysis of Scotch Whisky by Total Reflection X-Ray Fluorescence and Chemometric Methods: A Potential Tool in the Identification of Counterfeits. Anal. Chim. Acta 2017, 976, 14
- [24] Teodoro, J.A.R.; Pereira, H.V.; Sena, M.M.; Piccin, E.; Zacca, J.J.; Augusti, R. Paper Spray Mass Spectrometry and Chemometric Tools for a Fast and Reliable Identification of Counterfeit Blended Scottish Whiskies. Food Chem. 2017, 237, 1058
- [25] Tosato, F.; Correia, R.M.; Oliveira, B.G.; Fontes, A.M.; França, H.S.; Coltro, W.K.T.; Filgueiras, P.R.; Romão, W. Paper Spray Ionization Mass Spectrometry Allied to Chemometric Tools for Quantification of Whisky Adulteration with Additions of Sugarcane Spirit. Anal. Methods 2018, 10, 1952
- [26] Roullier-Gall, C.; Signoret, J.; Coelho, C.; Hemmler, D.; Kajdan, M.; Lucio, M.; Schäfer, B.; Gougeon, R.D.; Schmitt-Kopplin, P. Influence of Regionality and Maturation Time on the Chemical Fingerprint of Whisky. Food Chem. 2020, 323, 126748
- [27] Palmioli, A.; Alberici, D.; Ciaramelli, C.; Airoldi, C. Metabolomic Profiling of Beers: Combining 1H NMR Spectroscopy and Chemometric Approaches to Discriminate Craft and Industrial Products. Food Chem. 2020, 327, 127025
- [28] Forleo, T.; Zappi, A.; Gottardi, F.; Melucci, D. Rapid Discrimination of Italian Prosecco Wines by Head-Space Gas-Chromatography Basing on the Volatile Profile as a Chemometric Fingerprint. Eur. Food Res. Technol. 2020, 246, 1805
- [29] Rossi, L.; Foschi, M.; Biancolillo, A.; Maggi, M.A.; D’Archivio, A.A. Optimization of HS-SPME GC/MS Analysis of Wine Volatiles Supported by Chemometrics for the Aroma Profiling of Trebbiano d’Abruzzo and Pecorino White Wines Produced in Abruzzo (Italy). Molecules 2023, 28, 1534
- [30] Ma, G.; Zhang, Y.; Zhang, J.; Wang, G.; Chen, L.; Zhang, M.; Liu, T.; Liu, X.; Lu, C. Determining the Geographical Origin of Chinese Green Tea by Linear Discriminant Analysis of Trace Metals and Rare Earth Elements: Taking Dongting Biluochun as an Example. Food Control 2016, 59, 714
- [31] Mehari, B.; Redi‐Abshiro, M.; Chandravanshi, B.S.; Combrinck, S.; McCrindle, R.; Atlabachew, M. GC‐MS Profiling of Fatty Acids in Green Coffee ( Coffea Arabica L.) Beans and Chemometric Modeling for Tracing Geographical Origins from Ethiopia. J. Sci. Food Agric. 2019, 99, 3811
- [32] Monteiro, P.I.; Santos, J.S.; Rodionova, O.Y.; Pomerantsev, A.; Chaves, E.S.; Rosso, N.D.; Granato, D. Chemometric Authentication of Brazilian Coffees Based on Chemical Profiling. J. Food Sci. 2019, 84, 3099
- [33] Marek, G.; Dobrzański, B.; Oniszczuk, T.; Combrzyński, M.; Ćwikła, D.; Rusinek, R. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries Using an Electronic Nose and GC-MS. Sensors 2020, 20, 2124
- [34] Núñez, N.; Collado, X.; Martínez, C.; Saurina, J.; Núñez, O. Authentication of the Origin, Variety and Roasting Degree of Coffee Samples by Non-Targeted HPLC-UV Fingerprinting and Chemometrics. Application to the Detection and Quantitation of Adulterated Coffee Samples. Foods 2020, 9, 378
- [35] Abdelwareth, A.; Zayed, A.; Farag, M.A. Chemometrics-Based Aroma Profiling for Revealing Origin, Roasting Indices, and Brewing Method in Coffee Seeds and Its Commercial Blends in the Middle East. Food Chem. 2021, 349, 129162
- [36] Zou, Y.; Gaida, M.; Franchina, F.A.; Stefanuto, P.-H.; Focant, J.-F. Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, Chemometrics, and Machine Learning. Molecules 2022, 27, 1806
- [37] Farag, M.A.; Mohamed, T.A.; El-Hawary, E.A.; Abdelwareth, A. Metabolite Profiling of Premium Civet Luwak Bio-Transformed Coffee Compared with Conventional Coffee Types, as Analyzed Using Chemometric Tools. Metabolites 2023, 13, 173
- [38] Yang, P.; Zhu, Y.; Yang, X.; Li, J.; Tang, S.; Hao, Z.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Evaluation of Sample Preparation Methods for Rice Geographic Origin Classification Using Laser-Induced Breakdown Spectroscopy. J. Cereal Sci. 2018, 80, 111
- [39] Coelho, I.; Matos, A.S.; Teixeira, R.; Nascimento, A.; Bordado, J.; Donard, O.; Castanheira, I. Combining Multielement Analysis and Chemometrics to Trace the Geographical Origin of Rocha Pear. J. Food Compos. Anal. 2019, 77, 1
- [40] Gazeli, O.; Bellou, E.; Stefas, D.; Couris, S. Laser-Based Classification of Olive Oils Assisted by Machine Learning. Food Chem. 2020, 302, 125329
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b5b74c6-3d89-49ab-97a4-fd1563eaa551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.