PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D-Raman correlation spectroscopy as a method to recognize of the interaction at the interface of carbon layer and albumin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern nanomaterial production, including those for medical purposes, carbon based materials are important, due to their inert nature and interesting properties. The essential attribute for biomaterials is their biocompatibility, which indicates way of interactions with host cells and body fluids. The aim of our work was to analyze two types of model carbon layers differing primarily in topography, and developing their interactions with blood plasma proteins. The first layer was formed of pyrolytic carbon C (CVD) and the second was constructed of multi-walled carbon nanotubes obtained by electrophoretic deposition (EPD), both set on a Ti support. The performed complex studies of carbon layers demonstrate significant dissimilarities regarding their interaction with chosen blood proteins, and points to the differences related to the origin of a protein: whether it is animal or human. However the basic examinations, such as: wettability test and nano sctatch tests were not sufficient to explain the material properties. In contrast, Raman microspectroscopy thoroughly decodes the phenomena occurring at the carbon structures in contact with the selected blood proteins. The 2D correlation method selects the most intense interaction and points out the different mechanism of interactions of proteins with the nanocarbon surfaces and differentiation due to the nature of the protein and its source: animal or human. The 2D correlation of the Raman spectra of the MWCNT layer+HSA interphase proves an increase in albumin β-conformation. The presented results explain the unique properties of the Clayers (CVD) in contact with human albumin.
Twórcy
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
  • Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Kraków, Poland
  • Technolutions, Łowicz, Poland
  • Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
  • Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] L. Cademartiri and G. A. Ozin, Concepts of Nano‑chemistry, Wiley-VCH, 2009.
  • [2] S. K. Sahoo, S. Parveen, and J. J. Panda, “The present and future of nanotechnology in human health care”, Nanomedicine: Nanotechnology, Biology and Medicine, vol. 3, no. 1, 2007, 20–31 10.1016/j.nano.2006.11.008.
  • [3] H. Lee and G. Kim, “Three-dimensional plotted PCL/β‑TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration”, Journal of Materials Chemistry, vol. 21, no. 17, 2011, 6305–631210.1039/C0JM03414B.
  • [4] L. Zhang and T. J. Webster, “Nanotechnology and nanomaterials: Promises for improved tissue regeneration”, Nano Today, vol. 4, no. 1, 2009, 66– 80 10.1016/j.nantod.2008.10.014.
  • [5] D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis”, Chemical Society Reviews, vol. 41, no. 7, 2012, 2656–2672 10.1039/C2CS15261D.
  • [6] E. L. da Rocha, L. M. Porto, and C. R. Rambo, “Nanotechnology meets 3D in vitro models: Tissue engineered tumors and cancer therapies”, Materials Science and Engineering: C, vol. 34, 2014, 270–279 10.1016/j.msec.2013.09.019.
  • [7] A. Chen and S. Chatterjee, “Nanomaterials based electrochemical sensors for biomedical applications”, Chemical Society Reviews, vol. 42, no. 12, 2013, 5425–543810.1039/C3CS35518G.
  • [8] T. K. Dash and V. B. Konkimalla, “Polyє‑caprolactone based formulations for drug delivery and tissue engineering: A review”, Journal of Controlled Release, vol. 158, no. 1, 2012, 15–33 10.1016/j.jconrel.2011.09.064.
  • [9] R. Parikh and S. Dalwadi, “Preparation and characterization of controlled release polyɛ‑caprolactone microparticles of isoniazid for drug delivery through pulmonary route”, Powder Technology, vol. 264, 2014, 158–165 10.1016/j.powtec.2014.04.077.
  • [10] Y. Shen, ed., Functional Polymers for Nanomedicine, RSC Publishing: Cambridge, UK, 2013.
  • [11] L. Chen, D. Han, and L. Jiang, “On improving blood compatibility: From bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales”, Colloids and Surfaces B: Biointerfaces, vol. 85, no. 1, 2011, 2–7 DOI: 10.1016/j.colsurfb.2010.10.034.
  • [12] R.O. Ritchie, “Fatigue and fracture of pyrolytic carbon: a damage-tolerant approach to structural integrity and life prediction in ”ceramic” heart valve prostheses”, Journal of Heart Valve Disease, vol. 5, Suppl. 1, 1996, 9–31.
  • [13] H. Cao, “Mechanical performance of pyrolytic carbon in prosthetic heart valve applications”, Journal of Heart Valve Disease, vol. 5, Suppl. 1, 1996, 32–49.
  • [14] M. S. Scholz, J. P. Blanchfield, L. D. Bloom, B. H. Coburn, M. Elkington, J. D. Fuller, M. E. Gilbert, S. A. Muflahi, M. F. Pernice, S. I. Rae, J. A. Trevarthen, S. C. White, P. M. Weaver, and I. P. Bond, “The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review”, Composites Science and Technology, vol. 71, no. 16, 2011, 1791–1803 DOI: 10.1016/j.compscitech.2011.08.017.
  • [15] Y. Hanein and L. Bareket-Keren, “Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects”, Frontiers in Neural Circuits, vol. 6, 2013 DOI: 10.3389/fncir.2012.00122.
  • [16] J.-Y. Hwang, U. S. Shin, W.-C. Jang, J. K. Hyun, I. B. Wall, and H.-W. Kim, “Biofunctionalized carbon nanotubes in neural regeneration: a mini--review”, Nanoscale, vol. 5, no. 2, 2012, 487–497 DOI: 10.1039/C2NR31581E.
  • [17] G. A. Silva, “Neuroscience nanotechnology: progress, opportunities and challenges”, Nature Reviews Neuroscience, vol. 7, no. 1, 2006, 65–74 DOI: 10.1038/nrn1827.
  • [18] V. C. Sanchez, A. Jachak, R. H. Hurt, and A. B. Kane, “Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review”, Chemical Research in Toxicology, vol. 25, no. 1, 2012, 15–34 DOI: 10.1021/tx200339h.
  • [19] E. Engel, A. Michiardi, M. Navarro, D. Lacroix, and J. A. Planell, “Nanotechnology in regenerative medicine: the materials side”, Trends in Biotechnology, vol. 26, no. 1, 2008, 39–47 DOI: 10.1016/j.tibtech.2007.10.005.
  • [20] A. Wesełucha‑Birczyńska, A. Frączek‑Szczypta, E. Długoń, K. Paciorek, A. Bajowska, A. Kościelna, and M. Błażewicz, “Application of Raman spectroscopy to study of the polymer foams modified in the volume and on the surface by carbon nanotubes”, Vibrational Spectroscopy, vol. 72, 2014, 50–56 DOI: 10.1016/j.vibspec.2014.02.009.
  • [21] A. Wesełucha‑Birczyńska, M. Swiętek, E. Sołtysiak, P. Galiński, Ł. Płachta, K. Piekara, and M. Błażewicz, “Raman spectroscopy and the material study of nanocomposite membranes from poly(ε‑caprolactone) with biocompatibility testing in osteoblast-like cells”, Analyst, vol. 140, nno. 7, 2015, 2311–2320 DOI: 10.1039/C4AN02284J.
  • [22] F. Poncin-Epaillard, T. Vrlinic, D. Debarnot, M. Mozetic, A. Coudreuse, G. Legeay, B. El Moualij, and W. Zorzi, “Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules”, Journal of Functional Biomaterials, vol. 3, no. 3, 2012, 528–543 DOI: 10.3390/jfb3030528.
  • [23] A. Frączek‑Szczypta, E. Długoń, A. Wesełucha‑Birczyńska, M. Nocuń, and M. Błażewicz, “Multi walled carbon nanotubes deposited on metal substrate using EPD technique: A spectroscopic study”, Journal of Molecular Structure, vol. 1040, 2013, 238–245 nDOI: 10.1016/j.molstruc.2013.03.010.
  • [24] Benko, A. Przekora, A. Wesełucha‑Birczyńska, M. Nocuń, G. Ginalska, and M. Błażewicz, “Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic n deposition: physicochemical and biological characterization”, Applied Physics A, vol. 122, no. 4,2016 DOI: 10.1007/s00339-016-9984-z.
  • [25] Wesełucha‑Birczyńska, E. Stodolak‑Zych, S. Turrell, F. Cios, M. Krzuś, E. Długoń, A. Benko, W. Niemiec, and M. Błażewicz, “Vibrational spectroscopic analysis of a metal/carbon nanotube coating interface and the effect of its interaction with albumin”, Vibrational Spectroscopy, vol. 85, 2016, 185–195 DOI: 10.1016/j.vibspec.2016.04.008.
  • [26] Wesełucha‑Birczyńska, E. Stodolak‑Zych, W. Piś, E. Długoń, A. Benko, and M. Błażewicz, “A model of adsorption of albumin on the implant Surface titanium and titanium modified carbon coatings (MWCNT-EPD): 2D correlation analysis”, Journal of Molecular Structure, vol. 1124, 2016, 61–70 DOI: 10.1016/j.molstruc.2016.04.050.
  • [27] R. Vajtai, ed., Springer Handbook of Nanomaterials, Springer Handbooks, Springer-Verlag: Berlin Heidelberg, 2013 DOI: 10.1007/978-3-642-20595-8.
  • [28] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, vol. 61, no. 20, 2000, 14095–14107 DOI: 10.1103/PhysRevB.61.14095.
  • [29] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, 1991, 56–58 DOI: 10.1038/354056a0.
  • [30] L. E. Murr and P. A. Guerrero, “Carbon nanotubes in wood soot”, Atmospheric Science Letters, vol. 7, no. 4, 2006, 93–95 DOI: 10.1002/asl.138.
  • [31] J. J. Bang, P. A. Guerrero, D. A. Lopez, L. E. Murr, and E. V. Esquivel. “Carbon Nanotubes and Other Fullerene Nanocrystals in Domestic Propane and Natural Gas Combustion Streams”, Journal of Nanoscience and Nanotechnology, vol. 4, no. 7, 2004, 716–718 DOI: 10.1166/jnn.2004.095.
  • [32] N. Sinha and J.-W. Yeow, “Carbon nanotubes for biomedical applications”, IEEE Transactions on NanoBioscience, vol. 4, no. 2, 2005, 180–195 DOI: 10.1109/TNB.2005.850478.
  • [33] S. Zhang, Biological and Biomedical Coatings Handbook: Applications, CRC Press, 2017.
  • [34] S. Park and K. Hamad-Schifferli, “Nanoscale interfaces to biology”, Current Opinion in Chemical Biology, vol. 14, no. 5, 2010, 616–622 DOI: 10.1016/j.cbpa.2010.06.186.
  • [35] H. Cui and P. J. Sinko, “The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces”, Frontiers of Materials Science, vol. 6, no. 1, 2012, 47–59 DOI: 10.1007/s11706-012-0154-8.
  • [36] N. R. Washburn, K. M. Yamada, C. G. Simon, S. B. Kennedy, and E. J. Amis, “High-throughput investigation of osteoblast response to polimer crystallinity: influence of nanometerscale roughness on proliferation”, Biomaterials, vol. 25,no. 7, 2004, 1215–1224 DOI: 10.1016/j.biomaterials.2003.08.043.
  • [37] K. Anselme, “Osteoblast adhesion on biomaterials”, Biomaterials, vol. 21, no. 7, 2000, 667–681 DOI: 10.1016/S0142-9612(99)00242-2.
  • [38] J. Schaller, S. Gerber, U. Kämfer, S. Lejon, and C. Trachsel, Human Blood Plasma Proteins, John Wiley & Sons, Ltd: Chichester, UK, 2008 DOI: 10.1002/9780470724378.
  • [39] I. Noda and Y. Ozaki, Two‑dimensional Correlation Spectroscopy: Aplications in Vibrational and Optical Spectroscopy, John Wiley & Sons, 2004.
  • [40] I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, “Generalized Two-Dimensional Correlation Spectroscopy”, Applied Spectroscopy, vol. 54, no. 7, 2000, 236A–248A DOI: 10.1366/0003702001950454.
  • [41] I. Noda, “Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy”, Applied Spectroscopy, vol. 47, no. 9, 1993, 1329–1336 DOI: 10.1366/0003702934067694.
  • [42] H. Shinzawa, K. Awa, and Y. Ozaki, “Compression-Induced Morphological and Molecular Structural Changes of Cellulose Tablets Probed with near Infrared Imaging”, Journal of Near Infrared Spectroscopy, vol. 19, no. 1, 2011, 15–22 DOI: 10.1255/jnirs.918.
  • [43] “Shigeaki Morita – 2DShige software”. https://sites.google.com/view/shigemorita/home/2dshige. Accessed on: 2019-11-08.
  • [44] A. C. Ferrari, J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society of London. Series A, vol. 362, no. 1824, 2004, 2477–2512 DOI: 10.1098/rsta.2004.1452.
  • [45] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hernández, “Electronic, thermal and mechanical properties of carbon nanotubes”, Philosophical Transactions of the Royal Society of London. Series A, vol. 362, no. 1823, 2004, 2065–2098 DOI: 10.1098/rsta.2004.1430.
  • [46] H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes”, Carbon, vol. 49, no. 8, 2011, 2581–2602 DOI: 10.1016/j.carbon.2011.03.028.
  • [47] A. Wesełucha‑Birczyńska, K. Babeł, and K. Jurewicz, “Carbonaceous materials for hydrogen storage investigated by 2D Raman correlation spectroscopy”, Vibrational Spectroscopy, vol. 60, 2012, 206–211] DOI: 10.1016/j.vibspec.2012.01.008.
  • [48] C. Lewis, N. S. Snell, D. J. Hirschmann, and H. Fraenkel-Conrat, “Amino acid composition of egg proteins”, The Journal of Biological Chemistry, vol. 186, no. 1, 1950, 23–35.
  • [49] A. T. Tu, Raman spectroscopy in biology: Principles and applications, Wiley: New York, 1982.
  • [50] A. Synytsya, M. Judexová, T. Hrubý, M. Tatarkovič, M. Miškovičová, L. Petruželka, and V. Setnička, “Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA)”, Analytical and Bioanalytical Chemistry, vol. 405, no. 16, 2013, 5441–5453 DOI: 10.1007/s00216-013-6946-6.
  • [51] G. Anderle and R. Mendelsohn, “Thermal denaturation of globular proteins. Fourier transforminfrared studies of the amide III spectral region”, Biophysical Journal, vol. 52, no. 1, 1987, 69–74 DOI: 10.1016/S0006-3495(87)83189-2.
  • [52] L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy”, Journal of the American Chemical Society, vol. 98, no. 22, 1976, 7075–7080 DOI: 10.1021/ja00438a057.
  • [53] B. Meloun, L. Morávek, and V. Kostka, “Complete amino acid sequence of human serum albumin”, FEBS Letters, vol. 58, no. 1-2, 1975, 134–137 DOI: 10.1016/0014-5793(75)80242-0.
  • [54] Zhong, L. Song, J. Meng, B. Gao, W. Chu, H. Xu, Y. Luo, J. Guo, A. Marcelli, S. Xie, and Z. Wu, “Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes”, Carbon, vol. 47, no. 4, 2009, 967–973 DOI: 10.1016/j.carbon.2008.11.051.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b5a2170-331a-4d72-8763-a95d1498426f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.