PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance study of a liquid-core Bragg fiber sensor in presence of a defect layer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Performance parameter of a Bragg fiber waveguide based resonant sensor in presence of a defect layer in cladding regions is theoretically studied. The Bragg fiber waveguide consists of a liquid-core surrounded by alternate high and low refractive indices materials in cladding regions. Reflectivity of the proposed waveguide based resonant sensor is formulated using transfer matrix method for a non-homogeneous multilayer cylindrical system. The waveguide shows a band gap region with a narrow defect mode in the band gap region under the considered wavelength range. Instead of taking a whole band gap as a sensing signal, here the defect peak is taken as the sensing signal. It is observed that the intensity of defect mode is more sensitive for core refractive index than the intensity of traditional band gap region (lobe). This study shows that the higher sensitivity can be achieved by creating the defect at a position in cladding region where the intensity of transmitted light lies between 40% and 90%. Presence of a defect layer is able to increase the detection accuracy of the sensor and, hence increase the overall performance of this sensor.
Twórcy
  • Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
autor
  • Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
autor
  • Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
Bibliografia
  • [1] P. Yeh, A. Yariv, Bragg reflection waveguides, Opt. Commun. 19 (1976) 427–430.
  • [2] Y. Prajapati, J.P. Saini, D.S. Chauhan, V. Singh, Effect of Plasma on Modal Dispersion Characteristic of Elliptical Bragg Waveguide, Opt.-Electron. Rev. 22 (1) (2014) 13–20.
  • [3] P. Yeh, A. Yariv, E. Marom, ‘Theory of Bragg fiber, J. Opt. Soc. Am. 68 (1978) 1196–1201.
  • [4] M. Skorobogatiy, Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors, J. Sens. 524237 (2009)1–20.
  • [5] S. Campopiano, R. Bernini, L. Zeni, P.M. Sarro, Microfluidic sensor based on integrated optical hollow waveguides, Opt. Lett. 29 (2004) 1894–1896.
  • [6] H. Schmidt, A. Hawkins, Opto fluidic waveguides: I. Concepts and implementations, Microfluid. Nanofluid. 4 (2008) 3–16.
  • [7] H. Schmidt, A. Hawkins, Optofluidic waveguides: II. Fabrication and structures, Microfluid. Nanofluid. 4 (2008) 17–32.
  • [8] D. Yin, H. Schmidt, J.P. Barber, E.J. Lunt, A.R. Hawkins, Optical characterization of arch-shaped ARROW waveguides with liquid cores, Opt. Express 13 (2005)10564–10570.
  • [9] B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink,Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2laser transmission, Nature 420 (2002) 650–653.
  • [10] K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, Y. Fink, Hollow multilayer photonic bandgap fibers for NIR applications, Opt. Express 12 (2004) 1510–1517.
  • [11] P. Measor, S. Kuhn, E.J. Lunt, B.S. Phillips, A.R. Hawkins, H. Schmidt, Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing, Opt. Express 17 (2009) 24342–24348.
  • [12] H.T. Bookey, S. Dasgupta, N. Bezawada, B.P. Pal, A. Sysoliatin, J.E. McCarthy, M. Salganskii, V. Khopin, A.K. Kar, Experimental demonstration of spectral broadening in an all-silica Bragg fiber, Opt. Express 17 (2009) 17130–17135.
  • [13] O. Shapira, K. Kuriki, N.D. Orf, A.F. Abouraddy, G. Benoit, J.F. Viens, A. Rodriguez, M. Ibanescu, J.D. Joannopoulos, Y. Fink, M.M. Brewster, Surface-emitting fiber lasers, Opt. Express 14 (2006) 3929–3935.
  • [14] J. Scheuer, X. Sun, Radial Bragg resonators, in Photonic Microresonator, Research and Applications, in: I. Chremmos, O. Schwelb, N. Uzunoglu (Eds.),Series in Optical Sciences; Chap. 15, Springer, 2010.
  • [15] A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, M. Skorobogatiy, Transmission measurements of hollow-core THz Bragg fibers, J. Opt. Soc. Am. B 28 (2011) 896–907.
  • [16] E. Pone, C. Dubois, N. Guo, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, M. Skorobogatiy, Drawing of the hollow all-polymer Bragg fibers, Opt. Express 14 (2006) 5838–5852.
  • [17] H. Qu, M. Skorobogatiy, Resonant bio- and chemical Sensors using low-refractive-index-contrast liquid-core Bragg fibers, Sens. Actuators B 161 (2012) 261–268.
  • [18] K.L. Liao, J.J. Wu, T.J. Yang, D. Chen, L. Shen, A Novel Fiber Sensor Based on a Bragg Fiber with a Defect Layer, in: Progress In Electromagnetic Research Symposium, Beijing, China; March 23-27, 2009.
  • [19] M.A. Kaliteevski, R.A. Abram, V.V. Nikolaev, G.S. Sokolovski, Bragg reflectors for cylindrical waves, J. Mod. Opt. 46 (1999) 875–890.
  • [20] A.H. Cherin, An introduction to optical fibers, Mc Graw-Hill International, Tokyo, 1983.
  • [21] M. Born, E. Wolf, Principles of Optics, Cambridge, London, 1999.
  • [22] P. Yeh, Optical Waves in Layered, Media John Wiley & Sons, Singapore, 1991.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b519168-be53-4dff-916d-768b5c3c71ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.