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Abstract

The paper includes a necessary condition and sufficient conditions under which two

1-sparse topologies generated by two functions 1 and 15 are equal. Additionally

we proved that the intersection of all 1-sparse topologies is equal to the Hashimoto

topology.

1. Introduction

We shall use the following notations: R denotes the set of all real numbers,
N the set of all positive integers, m* the outer Lebesgue measure, £ the
o-algebra of Lebesgue measurable sets, m the Lebesgue measure and C the
family of all continuous, nondecreasing functions ¢ : (0,00) — (0,1) such

that lim+ P(z) = 0.
z—0
For any ¢ € C, F C R and = € R, we let

d(E,z) = limint O E=hx+ h])
- ’ h—0+ 2h

and (F h h
d(E, ) :limsupm (ENfz—hoth)
h—0t+ 2h
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as the lower and upper outer density of a set E at a point x, respectively.
Analogously, let

.. .m*(EN[x—h,x+h])
—d(E,x) =1 f
Y= d(B,2) = limin 2hi(2h)
. (N[0~ hya + )
- m* (EN|lz—h,z+

—d(E,x) =1
denote the lower and upper outer ¥-density of a set /' at a point x, respec-
tively.

Definition 1. [1] We say that x € R is a density point of a set E € L if
d(E,z) =1. We say that x € R is a dispersion point of a set E € L if x is
the -density point of the set R\ E.

Set, for each F € L,
®(E) = {z € R: z is a density point of E}.

Then the family d = {E € L: E C ®(E)} is a topology on the real line
called the density topology [1].

Definition 2. [4] Let 1) € C. We say that x € R is a v-dispersion point of
aset B € Lifp—d(E,x)=0. We say that x € R is a ¢-density point of
a set E € L if x is the 1-dispersion point of the set R\ E.

For any ¢ € C and E € L, let
Py (FE) ={z € R: z is a 1) — density point of E'}

and
Ty={FecL: ECdyE)}.

Theorem 1. [4] Let ¢y € C. Then Ty is a topology on the real line, stronger
than the Fuclidean topology and weaker than the density topology d.

Definition 3. [3] We say that a set E is sparse at a point x € R on
the right if there exists, for every ¢ > 0, § > 0 such that every interval
(a,b) C (x,x+90), with m*((x,a)) < om*((z,b)), contains at least one point
y such that m*(E N (z,y)) < em*((z,y)).

The family of sets sparse at x on the right is denoted by S(z+), and E
is said to be sparse at z if £ € S(x) = S(z+) N S(z—).
( S(z—) denotes, by convention, the family of sets sparse at = on the left.)

Let So(z) = {E € R : d(E,z) = 0}. Then by [3], for each z € R
So(x) C S(x).
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Theorem 2. [3] Let z € R and E C R. The following conditions are equiv-
alent:

(i) EcS(),
(ii) for each F C R, if d(F,x) =0, then d(E U F,z) = 0.

Definition 4. [2] Let » € C. We say that a set E is 1p-sparse at a point
x € R if for each ' C R the following holds:

if v —d(F,z)=0, then v —d(EUF,z)=0.

For each = € R, we denote by ¥ — S(z) the family of all sets which are

y-sparse at x. Put for each x € R, ¥ — Sp(x) ={E CR: ¢ —d(E,z) = 0}.

Theorem 3. [2] We assume that 1 € C and g(x) = 2z¢(2z) for x € (0,1].
Let E C R and let A be a measurable cover of E. Then the following condi-
tions are equivalent:

(i) E € —S(0).

(ii) for each ¢ € (0,1), there exists 6 € (0,1) such that, for each interval
la,b] C (0,6), if g(a) < dg(x — §g(x)) for each x € [b,1], then there
exists y € (a,b) such that m*(E N (—y,y)) < eg(y).

(iii) A € ¥ — S(0).
Let ¢ € C. For E € L, put
I'y(F) ={xr € R: xis a ¢ — sparse point of R\ E}.
Theorem 4. [2] Let ¢ € C and
Ty ={FEe€L: ECTyE)}
Then 1y is a topology on the real line, stronger than the 1-density topology

T, and weaker than the density topology d.

2. Comparison of i-sparse topologies

It is easy to see the following:

Theorem 5. Let € C, E CR and z € R. Then a set E € ¢ —S(x) if and
only if the set {y —x: y € E} € ¢ — §(0).

Lemma 1. Let vy € C and s € C. If 1 —S(0) = 12 —5(0), then 1y, = Ty,.
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Lemma 2. Let ¢ € C and 1o € C. If for each E C R,
v — d(E,0) = 0 if and only if s — d(E, 0) = 0,
then ¥y — S(0) = 12 — S(0).

Definition 5. We say that two functions 11 € C and ¥y € C are equivalent
if and only if there exist positive numbers o, 3 and § such that for each
x € (0,0)
Y1 ()
Yo (x)

Clearly, two functions ¢; € C and 15 € C are equivalent if and only if

. Y1 (x)
s ()

a <

< .

< o0

wnd (=)
. . 1T

Lemma 3. Let ¢; € C and o € C. If the functions 11 and ¥y are equiva-
lent, then

> 0.

1 — d(E,0) = 0 if and only if 4 — d(E,0) = 0

for each E C R.

P r o o f. Assume that liminf w
z—0+ 211 (27)
the functions 1y and 12, there exist positive real numbers § > 0 and § > 0

such that i;—gg < 3 for each z € (0,4). Thus,

= 0. By the equivalence of

0< m*(EN[-z,z]) ¢1(22) _ m*(EN[-z,z]) ¢1(22)
T 20(20) 1(2z) 2a1p1 (2x) 2(22)
m*(EN[—z,z])
< B 2y (2)

for each = € (0,0). Therefore,

lim inf = (BN [~-2,2]) < f-liminf m (BN [~z,2])

=0.
z—0+ 21‘1/12 (2.%') z—0t 2z (21')

The rest of the proof runs as before.

By the above lemmas we have the following.
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Theorem 6. Let i1 € C and o € C. If the functions 11 and ¥y are equiv-
alent, then Ty, = Ty,.

It appears that equivalence of ¥, and 5 is a sufficient condition for
the equality 7,, = 7y,, but not necessary. To prove this fact we need the
following lemma.

Lemma 4. Let {(an,b,)}nen be a sequence of intervals such that lim b, =

n—oo
o0

0 and 0 < bp1 < ap < 1 for each n € N. Assume that H = |J (an,by)
n=1
and g1 : [0,1] — [0,1] and g2 : [0,1] — [0, 1] are two increasing, continuous

functions such that
(I) 91(0) = g2(0) = 0,

(IT) if = ¢ H, then g1(x) = g2(z), and if x € H, then g1(z) < go(x), for
each z € [0,1],

(III) b, — an < Lg1(by) for each n € N.

Then lim inf Z-E0=z2) if and only if lim irJ}f m*(E0fza)) 0, for each
z—0

0+ g1(x) 92(x)
ECR.
P r o o f. By the condition (II), we have that m*(]j?([x—)m,x]) < m*(g?([x—)ac,az])
for each x € (0,1]. Thus if liminf m(E0=2.z]) _ () then
z—0

g1(z)

liminf (EN[-22]) < liminf (B[ 2]

=0.
z—0t 92(-75) z—07F 91 ((L‘)

Now we assume that lim inf ™-(E0l=2.z])
r—0t 92(33)

quence {zy}ren C (0,1) such that klim xp = 0 and
— 00

= (0. Then there exists a se-

* _
i (EN[—zg, zk])
k—oo gg(xk)

—0. (1)

If there exists a subsequence {xy,, }men such that xzg, ¢ H for each
(BN =@k @hy]) _ m* (BO[=y Ty,
m € N, then by (II), "0t tin)) _ n B ttatinl) for cach m € N.
Therefore, by the above and by (1),

i E N Tk Tk) (B O [ 2])
m—00 91(zk,,) k—o0 g2(zr)

and lim inf m(EN[—za]) _ 0.

r—0t gl(x)

=0
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Assume that there exists kg € N such that z;, € H, for each k& > k.
Put k > kg. By the definition of the set H, there exists ni € N such that
z € (an,, by, ). Then

91(bny) = 92(bn,,) = g2(x) (2)
and
m* (BN [=bn,, bn,]) < m* (BN [—zk, 2x]) +m" (BN ([=bn,, =2k U [28, bny )

m (B0l —epa]) o mUEOTee]) g by (TI1),

Thus from (2) we have

91(bny,) 92(zx)
* 2
m (E N ([_bnk7 _xk] U [xkvbnk]) < Q(bnk - ank) < n_kgl(bnk)'
Hence
m*(E N [=bpy, by, = m*(EN[—zg,xk]) 2
< + —.
gl(bnk) 92(.%'k) g
Observe that if klim xp, = 0, then klim by, = 0 and klim ny = oco. Therefore
by (1),
fimint T2 g ™ E O o b
z—0+ g1(x) k— 00 g1(bn,,)

Theorem 7. There exist two functions iy € C iy € C such that

iminf 21X _ o
r—0+t ¢2($)
0 < limsup () < o0
z—0t ¢2(:C)
for which Ty, = Ty,.
Proof. Leta, = %H, bn:an+%anﬁ and ¢, = % for each
n € N. Then lim b, =0 and b, 1 < a, < b, < 2b, < 1 for all n. Let ¢; € C
n—od
and 1o € C such that
% for t € [2b1,00),
Yy (t) = ﬁ for t € [2bp41,2¢,] and n > 1,

linear  for the remaining ¢ € (0, 0),

|=

for t € [2¢1,00),
Yo(t) = (71%2)' for t € [2¢p41,2a,] and n > 1,

]

linear  for the remaining ¢ € (0, 00).
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Therefore for each n € N| if t € (2a,,2b,), then

P1(t) < a(t), (3)
and if t € [2b,41, 2a,] U [2b1, 00), then
P1(t) = a(t). (4)
Hence brt)
lim sup — <1 < o0,
t—»O""p w2(t)
. ni(t) _ .. Y1(2an)
lim sup > limsup =1>0
ot Y2(t) T n—oo th2(2an)
and
_1
lim infq'bl—(t) < liminf ¥1(2en) = lim (ntZ)! = lim =0.
t—07F Q;Z)2(t) n—oo ¢2(2cn) n—0o0 D! n—oo n + 2
Let H = | (ap,by,) and
neN
| 2z (22) for  x € (0,1],
gl(x)—{ 0 for x=0,
| 2xpe(22) for x € (0,1],
92() = { 0 for = =0.

Then the functions g1 i go are continuous and increasing. Observe that if
x € H, then there exists n € N such that = € (an, by), so by (3),

g1(z) = 221 (27) < 2292(27) = g2(2),

and if z ¢ H, then = ¢ (ay,by) for n € N, thus by (4),

91(x) = 2291 (22) = 22¢2(27) = go(2).
Additionally, by the definition of the numbers a,, and b,,,

2 1 1 1 1
bn_ n= —Qpn—=7 = —2an 2ap,) = — n - bn
a na (n+2)| n Q ¢1( a ) ngl(a )< ngl( )
for n € N. Therefore, by lemma 4 we have that

lim inf (EN[- 1))

=0
z—0t g1 (CC)
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if and only if
lim inf (EN[-z 1))
2—0F g2(x)

for each set ¥ C R. Hence, by lemmas 2 and 1 we obtain that 7,, = 7y,.

=0

It is easy to prove the following lemma.

Lemma 5. Let s : [0,1] — [0,1] be a continuous increasing function such
that s(z) < x for x € (0,1] and s(0) =0. If h(x) = z — s(x) and

p(x) = min{t € [x,1] : h(t) = min{h(z) : z € [z,1]}}

for each x € (0,1], then lim p(xz)=0.

z—0t

Let ¢; € C and 49 € C. Set

2z (22)  for  x e (0,1],
gl(:c)—{ 0 for =0
and
| 2xpe(22) for x e (0,1],
9a(x) = { 0 for x=0.

Put hi(w) =12 — 5-gj(z) and
pi(x) = min{t € [z,1] : hL(t) = min{h](2) : 2 € [z,1]}}
for k e N, j € {1,2} and = € (0, 1].

Lemma 6. Let k € N, k > 2 and d € (0,1). If g1(p1(d)) < 3r92(p1(d)),
then 0 < hi(pi(2)) < pi(d) — g1(pi(d)) for 0 <z < pi(d).

Proof By k > 2 and by the definition of go, we have that gs(z) < 2z
and hi(z) =z — 3-g2(x) > 0 for z € (0,1]. Therefore,

W2 (p3(x)) = mind3(2) s 2 € [z, 1]} > 0
for each z € (0, 1].
Let d € (0,1) and = € (0,p}(d)). Then hi(pi(z)) = min{hi(z) : z €
[x,1]} and

R 0k (p1(d))) = min{h(2) : 2 € [pi(d), 1]} < hi(p1(d)).
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Therefore,

W) < BGREHE)) < R01@) = pld) - oo hd).

By the assumption, g1(p}(d)) < g2 (p}(d), so

phd) — -0} (@) < p(d) — 910} (d),

Thus by (5) and (6) we have that hZ(pi(z)) < pi(d) — g1(pi(d)).
Theorem 8. If

. ()
S (@)

then there exists a set E € Ty, \ Ty, -

=0,

P r o o f. By the assumption, there exists a decreasing sequence of

positive numbers {7 }ren such that klim vr = 0 and
—00

91(x) < 3702(2)

(7)

for any £ € N and =z € (0,7%). Let & € N. Suppose that we have also
chosen the intervals [a1,bi],... ,[ak,bx] and [c1,di],... ,[ck,di] such that

d1 < pl(dy) <1 and for each i € {2,... ,k}:
(1) d; < pi(d;) < min{v;, 3-92(ai-1), % 92(ci—1)},
) ¢ = pi(di) — 1(p1(dy)),
) a592(bi) = g1(hi(pi(dy)),
(V) a; = b; — 5:92(b;),
)

1 1

a < min {'yk+1, mgz(%), mgz(ck)} .

By lemma 5, there exists dyy1 € (0,a) such that dyy1 < pl(dii1)

(8)

< a.

Moreover, by lemma 6 we have that pl(dyi1) — g1(pi(diy1)) > 0. Put
Cri1 = pi(dr+1) — 91(p1(dis)) and wirr = hi(pi(dis1)) = pi(dis1) —

%91 (p%(dk—f—l))- Then

1 1
0 < p1 < Wiyt = prldis1) — 591(?%(dk+1)) < dg+1 — 591(dk+1) < dg+1,
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so by di4+1 € (0,7+1) and by (7), we obtain

1 1

0 PE——
< g1(wg41) < 2k + 1)292(wk+1) < 2k + 1)

92(wk+1)'

Therefore, there exists byy1 € (0, wg41) such that mgg(bkﬂ) = g1 (Wgt1)-
Set Ayl = bk+1 — mgz(blﬁ_l). Then 0 < apyr1 < bk+1 < Wiy < dk;—f—la
0 < cpg1 < Wig1 < dk+1 and by (8), dk+1 < min{ak, Ck}.

[e.e] [ee]

Put By = { ak,bi] and Ey = J [ck,dk]. We shall prove that E; €
k=1 k=1
o — S(0). By (V), (I) and (IV), we observe that

m(ErN[=t,t]) = m(ErN[0,t]) < bggo + bpy1 — app1
< ga(akin) + g (beg)
2k + 2) AU T 5 ) 20k
1 1
e <
< () < () )

for any k € N and t € [bg41,ax.

Let ke N, k> 1 and let 6 = min {fyk., ﬁgg(ak,l), Q—Ikgg(ck,l)}. We con-
sider an interval [a,b] C (0,6) such that ga(a) < 6g2 (p2(b) — 5:92(P3(D))).
If b € (b, am—1] for some m > k, then by (9),

(B0 [4,8) < go(t) < 1oal0)

for t € (a,b) N [bm, am—1]. Assume that b € (a,, by,] for some m > k. The
function h% o p% is nondecreasing, therefore

1 1 1
R0) ~ 5 0h0) < pbm) — 506 bm)) < b — 5-0a(br)
1
< bm - 5 bm = Um
< 5,7, 92( )=a

and

(o) < b0 (130) - a2 0)) < (320) - (R0

Hence, a < p2(b) — 5-92(p3 (b)) < ap,. Put t = ap,. Then t € (a,b) and by
(9), we have that

m(E1 N [—t,t]) <

1 1
t) < —galt).
102t < 2o2(t)
Thus, by theorem 3 we know that E; € 19 — S(0).
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Now we shall prove that Eo € 12 —S(0). By (I), (II) and (7), we observe
that

m(Bsy N [~t,1]) = m(Ban|[0,4]) < djso + dps1 — o
< ﬂzggyx%+o+gmﬁamﬂn
<§@%ﬁw@ﬂwﬂgéﬂwmﬁﬁﬂw
<. i (1) (10)

for any k € N and t € [pi(dyy1), cxl-

Let k€ N, k> 1 and let 6 = min {’Yk, ﬁgg(ak_l), ﬁgg(ck_l)}. We con-
sider an interval [a,b] C (0,8) such that ga(a) < g2 (pF(b) — 55 92(p3(D))).
If b € (pl(dyn), cm—1] for some m > k, then by (10),

(B> 0 [4,1]) < —galt) < 72(1)

for all t € (a,b) N [pl(dm), cm—1]. Assume that b € (¢, pi(dy)] for some

m > k. Then by (4) we have g1(p}(dm)) < 5;92(p1(dn)). Therefore by the
above and by lemma 6,

1
Pi(b) = 5792 (P (9) < pildm) = g1(P1(dm)) = .
Moreover,

n(0) < b (1E0) = a2 ) < o2 (320) - GmGsEOD)).

so a < pi(b) — ﬁgg(pz(b)) < ¢p. Put t =¢,. Then t € (a,b) and

m(Bs N [—4,1]) < ——gs(t) < %gg(t).

m—+1
Thus, by theorem 3 we know that Ey € 19 — S(0).

Put E = (R\ E7) N (R\ Es). By the above and by the definition of
Tyo-topology, we know that the set E € 7y,.

We shall show that E ¢ 7, . It suffices to prove that R\ E ¢ ¢; —S(0).
Put H=R\ E = E;UEj,. Let k € N\ {1}. We consider an interval [by, dj].
Then by (I), (7) and by lemma 6, we have

1

0 < pi(di) — g1 (p1(di) < p1(d) — 591(1?%(%)
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and dj, < 7. Thus by (7) and by (III), we obtain

1

00 < gz = 1o (s - gn0ia)

< 3o ()~ g0k

We shall show that m(H N [—y,y]) > 3g1(y) for all y € (by,dy). Let
y € (bedi). Ty € (b, ph(di) — Sg1(p}(di))], then by (IV) and (TII),

w0 ) > b - ax = 5raatn) =1 (1) - 008D ) = ().

If y € (p1(dy) — 591 (p1(di)), di), then by (II) we have

1

m(H N [=,4) > () — 501 () — ek = 501 (01 () > 501(0)

Therefore by theorem 3, we know that R\ E ¢ 11 — S(0).

Corollary 1. If 7y, = 7y,, then hfiso‘jp w;gg >0 and hfi%ﬁp m > 0.

Set
AZ = {x €(0,1):g1(x) < %gg(x)},

Bf = {:c €(0,1): go(x) < %gl(az)}

and A, = Af U(=A}) i By =B} U(=B;) for k € N.

Lemma 7. Let k € N. Assume that (R\ Af) N (0,1) # 0 for all n € N.
If E C R satisfies condition liminf ™ E0=2.2)

z—07F 2(2)
sequence {Yn }nen such that lim y, =0 and
n—oo

= 0, then there exists a

m*(E N [_ym yn]) m*(Ak N [_yna yn])

lim sup < limsup .
n—00 g1 (yn) n—00 g1 (yn)
Proof. Iflim irlf %W = 0, then there exists a sequence {z;, }nen
x—0
such that lim z,, =0 and

n—~0o0

* E _
lim m*(E N [—xn, Ty])

Jim. 7 (@) = 0. (11)
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Consider two cases:
1. There exists a subsequence {z,, }men such that z,,, ¢ A for each
m € N.
*(EN[=Znpy Ty, ke (EN[=Znp, gy,
Then g1(2n,,) > £2(2n,,) and " gg(fnm)x D < Fmi gQ[(zim)m D
for each m € N. Thus by (7),

*E T L,y n . *E T,y n
imsup " E O En ) B (B O [, 0,)

=0.
m—o0 g1 (xnm) m—0oo g2 (xnm)

Put y,, = xy,, for each m € N. Then {y,, }men C (0,1), lim y,, =0 and
m—oQ

(BN [— (A B
limsupm (B0 [=Ym: Ym]) ZOSIimSupm (A N ymvym]).

2. There exists ng € N such that x,, € Ag for each n > ny.

Set n > ng. By the continuity of the functions ¢g; and go, we know that
the set A} is open. Therefore, there exists a component interval (ay, b,) of
the set A,‘: such that z,, € (an,b,). Then

91(0n) = 10200) 2 £o2(n) (12)

and

M (BN [=bp, ba]) < m*(E O [~2n, 7)) +m* (B O ([=bp, =] U [2n, b)))-

Moreover by (12), m*(Eg[(;:;“x"D < km*(Egz[(;:;’x"]) and

m*(E O ([=bp, —n] U [Tn, bn])) < m*(Ag O [=bp, ba])-

Thus,

m*(EN[=byp,by]) _ km*(EN[—xn,,)) “(Ag N [=bp, by))
gl(bn) = g2 (xn) + bn) .

By assumption, (R\ 4;) N (0,1) # 0 for each m € N and lim z, =

n—oo
0, therefore there exist subsequences {by,, }men and {z,,, }men such that

lim b,, =0 and z,,, € (an,,,bn,,) for all m. Hence by the above and by

m—0o0

(11), we have that

m—00 gl(bnm) m—00 gl(bnm)




34 Anna Gozdziewicz-Smejda, Ewa F.azarow

Lemma 8. [fliminf 2022l o o tpep (R\A)N(0, L) #0 for each

z—0t g1(z)
m € N.
Proof Bylim irif W < 00, we have that there exist a < oo
z—0

and a sequence {z, }nen such that lim z, = 0 and lim m(AkO[=Zn,@n])
n— oo n—oo g1 (mn)

Suppose that there exists m € N such that (R\ AZ) N (07 %) = (). Then
there exists ng € N such that

1 1
[—Zn, 2, C (——, E) C A

= Q.

for each n > ngy. Hence

*(A — 2
limm( k0 xn’xn]):lim $:oo>a,
n—0oo gl(xn) n—oo 25(?”1/)1(22?”)

a contradiction.

Let

£ = lim sup m (A 0 [z, 7))
z—0t g1 (‘T)

and “(B
z—0t 92(‘T)

for each k € N.

Theorem 9. Let E C R such that liminf ZE0Ez2l) _ If lim g, = 0,
z—0t 92(2) k—o0

then lim inf m-E0[=z.a]) _ o

z—0t 91()

Proof. We may assume that all €, < oco. Then lim irlf W <
z—0

e < oo for each k € N. Thus by lemma 8, (R\ 4;) N (0,L) # @ for any

k€ Nand m € N.

We shall show that for each k£ € N there exists z; € (O, %) such that

1

m*(E N [—zg, zk]) < (ek + E) g1(2x).

Let & € N. By lemma 7, we have that there exists a sequence {y*},en
such that lim y* =0 and
n—oo

“(ENI[— k’ k (AN [— k’ k
n—00 g1 (yn) n—00 g1 (yn)
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Moreover,
“(Ap N [—yF, yk (AN [~ 1
limsupm (A [kyn’y"]) < limsupm (A O [, 2]) =cp <éep+ —.
n—00 gl(yn) z—0t 91 (:C) k
Hence,
“(EN[—yk, gk 1
limsupm ( [ kynvyn]) <ep+ —.
n—00 91(yr) k

Therefore, there exists ng € N such that

DS R CEE P

for n > ng. We chose n > ng such that y* € (0, %) and put z; = y*. Then

m*(E 0 [—25, 24]) < <ak + %) 01 (20).

Analogously we can prove the following theorem.

Theorem 10. Let E C R such that liminf - E0=22) _ o 1f lim e =0,
z—0t g1(2) k—o0

e (BEN[—za])
then lg&é&f ) =0.

By theorems 9 and 10 and by lemmas 1 and 2, we have the following:
Theorem 11. If lim n, = 0= lim &y, then 7y, = Ty, .
k—o0 k—o0
Let
O* ={U\ Z: U is an open set in the Euclidean topology and m(Z) = 0}.

( O* is the so-called Hashimoto topology considered for the o-ideal of sets
of measure zero.)

Theorem 12. () 7, = O*.
Ppel

P r o o f. By theorem 4, we have that 7, C 7, for all ¢y € C. Thus,
N 7y, C () 7y. Moreover, by theorem 2.11 [4], (| 7, = O*. Hence

peC pel =te
O* C ﬂ Top-
pel
Suppose now that there exists a set A € () 7 \ O*. Then there ex-
Ppel

ists z € A such that m((R\ A) N[z —t,z +¢t]) > 0 for each ¢ > 0. Set
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E={y—z:yeR\ A} and f(t) = m(Er;iEf_t’tD, for each ¢ > 0. Then the
function f is continuous and f(¢) > 0 for each ¢t > 0. Moreover, by theorem
4, the set A € d. Therefore, 0 is a point of dispersion of the set E and

lim f(t) = 0.
Jm f()

Let

| f (%x) for x>0,
q(x)—{ 0 for x=0.
Set 29 = 2 and x,, = max {z € [0,z,_1] : q(z) = 2q(x,_1)} for each n € N.
It is easy to see that ¢(z) > ¢(x,) for any n € N and z € [z,,2z,—1], and
lim z, = 0. Let ¢ € C such that
n—oo

2q(2) for x>2,
P(x) = %q(mn,l)) for z€ [%(mn +xp-1),Tn—1] and n € N,
linear for the remaining z € (0, 2).

Then ¥ (22) < q(2z) = f(x) for x € (0,1]. Thus,

mEN[-1)
2(2t)

for each t € (0, 1] and the set E ¢ ¢ — S(0). Therefore, A ¢ 7, a contradic-
tion.
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