PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on the physicochemical properties of surface modified Ti13Nb13Zr alloy for skeletal implants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As it is widely stated in the literature, biofilms are responsible for most chronic infections, which have grown exponentially over the past three decades. The use of so-called alloys, as a new generation of materials, enables us to find the golden mean in the arena widely known as implantology. The use of the surface layer, using the chosen Atomic Layer Deposition method, is to be the basis for minimizing the risk of an organism reactions. Therefore, the primary objective of this study was to observe the impact of physicochemical properties of the surface layers (bactericidal) on the processes that occur on the implants surface made of titanium biomaterials used in bone structures. The study also attempted to evaluate the physicochemical properties of the ZnO coatings, deposited on the substrate of one of the new generation Ti13Nb13Zr alloys, using the ALD method. Included in the assessment of the physicochemical properties of the surface layers formed in this manner, we perform pitting corrosion resistance tests, scratch tests, tribological tests and surface wettability tests. Based on the obtained data, the differing physicochemical properties of the alloy with ZnO coatings are found to be dependent on the applied surface modification. For the conducted tests, differences are determined for the tests on the corrosion resistance, surface wettability and the abrasion resistance for samples with and without the ZnO coating. In addition, tests show that the coating applied to the alloy, which is previously subjected to the sand-blasted process, is characterized by improved adhesion.
Rocznik
Strony
39--47
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
autor
  • Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Częstochowa, Poland.
  • Fabryka Narzędzi Medycznych CHIRMED Marcin Dyner, Rudniki, Poland.
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
Bibliografia
  • [1] BASIAGA M., STASZUK M., WALKE W., TAŃSKI T., KAJZER W., Potentiostatic, potentiodynamic and impedance study of TiO2 layers deposited of 316 LVM steel used for coronary stents, Arch. Metall. Mater., 2016, 61, 821–824, https://doi.org/10.1515/amm-2016-0138
  • [2] BASIAGA M., WALKE W., STASZUK M., KAJZER W., KAJZER A., NOWINSKA K., Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents, Arch. Civ. Mech., 2017, 17, 1, 32–42.
  • [3] BĘDZIŃSKI R., FILIPIAK J., PEZOWICZ C., KRZAK J., KOWALSKI M., Influence of substrate roughness on TiO2 and SiO2 coating topography coated by functional sol-gel derived layers, Eng. Biomater., 2008, 11, 87–89.
  • [4] BIGI A., FINI M., BRACCI B., BOANINI E., TORRICELLI P., GIAVARESI G. et al., The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model, Biomaterials, 2008, 29, 1730–1736, https://doi.org/10.1016/j.biomaterials.2007.12.011
  • [5] CZYZEWSKA-DORS E., DORS A., POMORSKA-MOL M., Właściwości biofilmu bakteryjnego warunkujące oporność na antybiotyki oraz metody jego zwalczania, Życie Weterynaryjne, 2018, 93, 765–771.
  • [6] DOMMETI V.K., PRAMANIK S., ROY S., Effect of polyethylene glycol on surface coating of Ta2O5 onto titanium substrate in sol-gel technique, Acta Bioeng. Biomech., 2021, 23, 197–206, https://doi.org/10.37190/ABB-01757-2020-05
  • [7] GALLO J., HOLINKA M., MOUCHA C.S., Antibacterial Surface treatment for orthopaedic implants, Int. J. Mol. Sci., 2014, 15, 13849–13880, https://doi.org/10.3390/ijms150813849
  • [8] GODLEWSKI M., GUZIEWICZ E., ŁUKA G., KRAJEWSKI T., ŁUKASIEWICZ M., WACHNICKI Ł., ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide, Thin Solid Films, 2009, 518, 1145–1148, https://doi.org/10.1016/j.tsf.2009.04.066
  • [9] GOLVANO I., GARCIA I., CONDE A., TATO W., AGINAGALDE A., Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment, J. Mech. Behav. Biomed. Mater., 2015, 49, 186–196, https://doi.org/10.1016/j.jmbbm.2015.05.008
  • [10] KONG J.Z., REN C., TAI G.A., ZHANG X., LI A.D., WU D. et al., Ultrathin ZnO coating for improved electrochemical performance of LiNi 0.5Co0.2Mn0.3O2 cathode material, J. Power Sources, 2014, 266, 433–439, https://doi.org/10.1016/j.jpowsour.2014.05.027.
  • [11] KURPANIK R., ROGOWSKA P., SARRAJ S., WALKE W., Wpływ przygotowania powierzchni oraz parametrów procesu utleniania anodowego na zwilżalność i odporność korozyjną tytanu cpTi Grade 2, Aktual. Probl. Biomech., 2019, 18, 5–12.
  • [12] MARCINIAK J., Biomateriały, Wydawnictwo, 2013, https://doi.org/ 10.1017/CBO9781107415324.004
  • [13] MARTIN P.M., Handbook of Deposition Technologies for Films and Coatings, Third Edition: Science, Applications and Technology, Peter M.M., 2010.
  • [14] MRÓZ W., BUDNER B., BURDYŃSKA S., CZWARTOS J., PROKOPIUK A., MAJOR Ł., Osadzanie warstw węglowych metodami plazmowymi, na poliuretanie „ChronoFlex AR/LT” planowanym do zastosowania w programie „Polskie Sztuczne Serce”, 2012. A study on the physicochemical properties of surface modified Ti13Nb13Zr alloy for skeletal implants 47
  • [15] ORZECHOWSKA A., SZYMAŃSKA R., Nanotechnologia w zastosowaniach biologicznych – wprowadzenie, Wszechświat, 2016, 117, 60–69.
  • [16] PASICH E., WALCZEWSKA M., PASICH A., MARCINKIEWICZ J., Mechanism and risk factors of oral biofilm formation, Postępy Hig. Med. Dosw., 2013, 67, 736–741, https://doi.org/10.5604/17322693.1061393
  • [17] PATEL S., BUTT A., TAO Q., ROYHMAN D., SUKOTJO C., TAKOUDIS C.G., Novel functionalization of Ti-V alloy and Ti-II using atomic layer deposition for improved surface wettability, Colloids Surfaces B Biointerfaces, 2014, 115, 280–285, https://doi.org/10.1016/j.colsurfb.2013.11.038
  • [18] POKROWIECKI R., SZARANIEC B., CHŁOPEK J., ZALESKA M., Recent trends in surface modification of the titanium biomaterials used for endoosseus dental implants, Eng. Biomater., 2014, 17, 2–10.
  • [19] POKROWIECKI R., TYSKI S., ZALESKA M., Problematyka zakażeń okołowszczepowych, Postępy Mikrobiol., 2014, 53, 123–134.
  • [20] QIU Z.Y., CHEN C., WANG X.M., LEE I.S., Advances in the surface modification techniques of bone-related implants for last 10 years, Regen. Biomater., 2014, 1, 67–79.
  • [21] SCHROEDERA G., Nanotechnologia, kosmetyki, chemia supramolekularna, Cursiva, 2010.
  • [22] SUROWSKA B., BIENIAŚ J., A comprative analysis of Surface modification influence on selected properties of titanum and titanium alloy, Eng. Biomater. Biomater., 2010, 1, 72–76.
  • [23] SZEWCZENKO J., JAGLARZ J., BASIAGA M., KURZYK J., SKOCZEK E., PASZENDA Z., Topography and thickness of passive layers on anodically oxidized Ti6Al4V alloys, Rev. Electr., 2012, 88, 12B, 228–231.
  • [24] SZEWCZENKO J., KAJZER W., KAJZER A., BASIAGA M., KACZMAREK M., ANTONOWICZ M., Biodegradable polimer coatings on Ti6Al7Nb alloy, Acta Bioeng. Biomech., 2020, 21, 83–92, https://doi.org/10.37190/abb-01461-2019-01
  • [25] SZLAUER W., OBŁĄK E., PALUCH E., BALDY-CHUDZIK K., Biofilm and methods of its eradication, Postępy Hig. Med. Dosw., 2019, 73, 397–413, https://doi.org/10.5604/01.3001.0013.1605.
  • [26] TSAI M.T., CHANG Y.Y., HUANG H.L., HSU J.T., CHEN Y.C., WU A.Y.J., Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants, Thin Solid Films, 2013, 528, 143–150, https://doi.org/10.1016/j.tsf.2012.05.093
  • [27] VLADKOVA T.G., STANEVA A.D., GOSPODINOVA D.N., Surface engineered biomaterials and ureteral stents inhibiting biofilm formation and encrustation, Surf. Coatings Technol., 2020, 404, https://doi.org/10.1016/j.surfcoat.2020.126424
  • [28] WACHNICKI Ł., Strukturalna, optyczna i elektryczna charakteryzacja warstw monokrystalicznych oraz nanostruktur tlenku cynku otrzymywanych metodą osadzania warstw atomowych, Polish Academy of Sciences, 2014.
  • [29] WIATRAK B., KARUGA-KUŹNIEWSKA E., STASZUK A., GABRYŚ J., TADEUSIEWICZ R., Vascular System Infections: Characteristics, Risk Factors, Prevention Methods and Economic Impact, Polim. Med., 2016, 46, 59–69, https://doi.org/10.17219/pim/64696
  • [30] XIANG Y., LI J., LIU X., CUI Z., YANG X., YEUNG K.W.K., Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility, Mater. Sci. Eng. C., 2017, 79, 629–637, https://doi.org/10.1016/j.msec.2017.05.115
  • [31] YANG B., Applications of Titania Atomic Layer Deposition in the Biomedical Field and Recent Updates, Am. J. Biomed. Sci. Res., 2020, 8, 465–468, https://doi.org/10.34297/ajbsr.2020.08.001321
  • [32] YANG Q., YUAN W., LIU X., ZHENG Y., CUI Z., YANG X., Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility, Acta Biomater., 2017, 58, 515–526, https://doi.org/10.1016/j.actbio.2017.06.015
  • [33] ZDUNEK B., PIETRASZEK A., Biomedyczny przegląd naukowy, Tom. 2. Wydawnictwo Naukowe TYGIEL, sp. z o.o., 2016.
  • [34] ZHU S., LIU J., SUN J., Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes, Appl. Surf. Sci., 2019, 484.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b43b171-7239-4024-9786-dd2677836937
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.