PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrome-metallurgical waste management: Turning metal-enriched waste into valuable resources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The convergence of hydrometallurgical waste management and the principles of the circular economy holds immense potential for addressing the challenges posed by metal-enriched waste. By turning waste into valuable resources through efficient metal extraction, this approach not only aligns with sustainable development goals but also contributes to the conservation of resources, reduction of waste, and the promotion of economic and environmental well-being. This article deals with the further possibilities of processing metal-bearing wastes in the form of steel drifts via hydrometallurgy. The main part of this research focuses on the development of suitable technology for the leaching of steel flakes to obtain selected non-ferrous metals, mainly zinc and lead, for economic and environmental reasons. Laboratory experiments are carried out to verify a suitable leaching agent in the form of high-temperature acid leaching, neutralizing leaching, and magnetic separation verified in lead seals. From the results of the experiments, a suitable technology for processing steel fumes is proposed.
Rocznik
Strony
107--113
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • VSB – Technical University of Ostrava 15 17. listopadu St., 708 00 Ostrava, Czech Republic
autor
  • LANEX a.s., Hlučínská 96, Bolatice, Czech Republic
  • Czestochowa University of Technology 19b Armii Krajowej Ave., 42-201 Czestochowa, Poland
Bibliografia
  • 1. Baran, L., Šonovský, P., Michálek, J. & Kučerová, R. (2003) Ocelárenské kaly-zdroj suroviny hutím. Recyklace odpadů VIII, TU-VŠB Ostrava, pp. 273–277.
  • 2. Bernasowski, M. (2014) Theoretical study of the hydrogen influence on iron oxides reduction at the blast furnace process. Steel Research International 85(4), pp. 670–678, doi: 10.1002/srin.201300141.
  • 3. Boonmee, C., Legsakul, K. & Arimura, M. (2023) Multi-objective two-stage stochastic optimization model for post-disaster waste management. Production Engineering Archives 29(1), pp. 58–68, doi: 10.30657/pea.2023.29.8.
  • 4. Bounds, C.O. & Pusateri, J.F. (1990) EAF dust processing in the gas-fired flame reactor. Lead-Zinc-Tin’90 – World Symposium, Anaheim, California.
  • 5. Brožová, S. (2013) Possibility of using pyrolysis and plasma during disposal of plastic parts of electric waste. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, pp. 423–428.
  • 6. Brožová, S., Ingaldi, M. & Šperlín, I. (2013) Economical aspects of high-temperature heating utilization for industrial waste treatment. METAL 2013. 22nd International Conference on Metallurgy and Materials, TANGER Ltd., Ostrava, pp. 1735–1739.
  • 7. Czajkowska, A. & Ingaldi, M. (2023) Analysis of the survey results on the pro-ecological awareness of young people in the aspect of sustainable development. Management Systems in Production Engineering 31(3), pp. 312–321, doi: 10.2478/mspe-2023-0035.
  • 8. Dvorsky, R., Sliva, A., Lunacek, J. & Piksova, K. (2010) Preparation of silicon nanoparticles by means of disintegration in a cavitation water jet. 2nd NANOCON International Conference. TANGER, Olomouc, pp. 144–150.
  • 9. Džupková, M., Fröhlichová, M., Legemza, J. & Findorák, R. (2011) Evaluation of selected technological and ecological parameters of sinter production. Acta Metallurgica Slovaca 17(4), pp. 269–275.
  • 10. Gavardashvili, G. & Vartanov, M. (2023) Engineering and technical structures of the Zhinvali hydroengineering complex and assessment of the state of their management. Production Engineering Archives 29(1), pp. 37–43, doi: 10.30657/pea.2023.29.6.
  • 11. Grebski, M. & Mazur, M. (2022) Social climate of support for innovativeness. Production Engineering Archives 28(1), pp. 110–116, doi: 10.30657/pea.2022.28.12.
  • 12. Gucma, M., Deja, A. & Szymonowicz, J. (2023) Environmental solutions for maritime ships: challenges and needs. Production Engineering Archives 29(2), pp. 216–224, doi: 10.30657/pea.2023.29.25.
  • 13. Hara, Y., Ishiwata, N., Itaya, H. & Miyagawa, S. (1998) Development of a smelting reduction process for electric arc furnace dust recycling. La Revue Métallurgie – CIT, pp. 369–375.
  • 14. Heiss, J., Fritz, B. & Kohl, B. (1998) Development of dust-recycling at Voest-Alpine Stahl Linz GmbH from 1989 to 1997. Seminar on Economic Aspects of Clean Technologies, Energy and Waste Management in Steel Industry. Linz, Austria, April 1998.
  • 15. Hlushchenko, R., Tkachenko, T., Mileikovskyi, V., Kravets, V. & Tkachenko, O. (2022) “Green structures” for effective rainwater management on roads. Production Engineering Archives 28(4), pp. 295–299, doi: 10.30657/ pea.2022.28.37.
  • 16. Imriš, I., Klenovčanová, A. & Imriš, M. (1998) Steelmaking flue dust – Source of metals or waste. Trade Steel. Sem. 1/15, 1998, Linz.
  • 17. Ingaldi, M. & Ulewicz, R. (2020) Problems with the implementation of Industry 4.0 in enterprises from the SME sector. Sustainability 12(1), 217, doi: 10.3390/su 12010217.
  • 18. Jonšta, P., Váňová, P., Brožová, S., Pustějovská, P., Sojka, J., Jonšta, Z. & Ingaldi, M. (2016) Hydrogen embrittlement of welded joint made of supermartensitic stainless steel in environment containing sulfane. Archives of Metallurgy and Materials 61(2), pp. 709–711, doi: 10.1515/amm2016-0121.
  • 19. Kardas, E. & Brožová, S. (2013) Situation in waste treatment in Poland. METAL 2013. 22nd International Conference on Metallurgy and Materials, TANGER Ltd., Ostrava, pp. 1773–1778.
  • 20. Kardas, E., Brožová, S., Pustějovská, P. & Jursová, S. (2017) The evaluation of efficiency of the use of machine working time in the industrial company – case study. Management Systems in Production Engineering 25(4), pp. 241– 245, doi: 10.1515/mspe-2017-0034.
  • 21. Klein, K.H. (1998) The BSB process to recycle zinc and lead fume dust. Trade Steel. Sem. 1/29, 1998, Linz.
  • 22. Kursa, M., Leško, J., Kret, J., Botula, J., Krištofová, D. & Kárník, T. (1999) Charakteristika a možnosti zpracování jemnozrnných hutních odpadu. Hutnícke Listy 7–8, pp. 130–136.
  • 23. Lazar, S., Klimecka-Tatar, D. & Obrecht, M. (2021) Sustainability orientation and focus in logistics and supply chains. Sustainability 13(6), 3280, doi: 10.3390/ su13063280.
  • 24. Legemza, J., Fröhlichová, M., Findorák, R. & Džupková, M. (2019) Modelling of mass and thermal balance and simulation of iron sintering process with biomass. Metals 9(9), 1010, doi: 10.3390/met9091010.
  • 25. Majerčák, Š. (1986) Vysokopecná vsádzka. Alfa/SNTL.
  • 26. Nowicka-Skowron, M. & Ulewicz, R. (2015) Quality Management in Logistics Processes in Metal Branch. METAL 2015. 24th International Conference on Metallurgy and Materials, TANGER Ltd., Ostrava, pp. 1707–1712.
  • 27. Oujezdsky, A., Sliva, A. & Brazda, R. (2015) Using ICT in education: measuring systems interfaced to computers. 9th International technology, education and development conference. Madrid: INTED Proceedings, pp. 7509– 7512.
  • 28. Radzyminska-Lenarcik, E., Ulewicz, R. & Ulewicz, M. (2018) Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole. Desalination and Water Treatment 102, pp. 211–219, doi: 10.5004/dwt.2018.21826.
  • 29. Radzyminska-Lenarcik, E., Ulewicz, R. & Ulewicz, M. (2018) Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole. Desalination and Water Treatment 102, pp. 211–219, doi: 10.5004/dwt.2018.21826.
  • 30. Slíva, A., Brázda, R., Procházka, A., Martynková, G. & Brabašová, K. (2019) Investigation of geometric properties of modified titanium white by fluidization for use in the process of transport, handling, processing and storage. Journal of Nanoscience and Nanotechnology 19(5), pp. 2997– 3001, doi: 10.1166/jnn.2019.15872.
  • 31. Slíva, A., Brázda, R., Procházka, A., Martynková, G. & Brabašová, K. (2019) Study of the optimum arrangement of spherical particles in containers having different cross section shapes. Journal of Nanoscience and Nanotechnology 19(5), pp. 2717–2722, doi: 10.1166/jnn.2019.15873.
  • 32. Slíva, A., Samolejová, A., Brazda, R., Zegzulka, J. & Polak, J. (2003) Optical parameter adjustment for silica nano and micro-particle size distribution measurement using mastersizer 2000. Proceedings SPIE 5445, Microwave and Optical Technology, pp. 160–163, doi: 10.1117/12. 558761.
  • 33. Steffes, B., Drissen, P. & Kuhn, M. (1998) Optimization of the dust cycle in KEP EAF steel shop. Seminar on Economic Aspects of Clean Technologies, Energy and Waste Management in Steel Industry. Linz, Austria.
  • 34. Szataniak, P., Novy, F. & Ulewicz, R. (2014) HSLA Steels-Comparison of catting techniques. METAL 2014. 23rd International Conference on Metallurgy and Materials, TANGER Ltd., Ostrava, pp. 778–783.
  • 35. Tomsana, A., Itoba-Tombo, E.F. & Human, I.S. (2020) An analysis of environmental obligations and liabilities of an electricity distribution company to improve sustainable development. SN Applied Science 2, 1648, doi: 10.1007/ s42452-020-03462-y.
  • 36. Ulewicz, R., Siwiec, D., Pacana, A., Tutak, M. & Brodny, J. (2021) Multi-criteria method for the selection of renewable energy sources in the Polish industrial sector. Energies 14(9), 2386, doi: 10.3390/en14092386.
  • 37. Wachnik, B. (2022) Analysis of the use of artificial intelligence in the management of Industry 4.0 projects. The perspective of Polish industry. Production Engineering Archives 28(1), pp. 56–63, doi: 10.30657/pea.2022.28.07.
  • 38. Zhidebekkyzy, A., Temerbulatova, Z. & Bilan, Y. (2022) The improvement of the waste management system in Kazakhstan: impact evaluation. Polish Journal of Management Studies 25(2), pp. 423–439, doi: 10.17512/ pjms.2022.25.2.27.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b435bda-7644-4a0f-867b-b96fd711e395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.