PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage-reliability approach for fatigue crack propagation in MDPE gas pipe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fatigue crack propagation tests are carried out on arc-shaped specimens prepared from MDPE gas pipes. Damage zone characterization is achieved using the diamond wafer sectioning technique from partially propagated and prematurely arrested cracks. Damage ahead of the crack-tip is used to assess a damage parameter and reliability based on statistical laws and subsequent use the PHIMECA Software. It is shown that a length and a width associated with a corresponding change in thickness at the fracture surface satisfactorily describe the damage zone size. The 3-parameter Weibull model gives the best reliability behavior and a critical lifetime of 82%. When considering separately both the Dugdale model and experimental damage zone measurements, it is possible to establish the evolution of the reliability index as a function of crack length. It is concluded that the reliability index approach based on damage provides a more consistent representation compared to analytical models.
Rocznik
Strony
42--52
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab., wykr.
Twórcy
  • Mechanics of Materials & Plant Maintenance Research Laboratory (LR3MI), Mechanical Engineering Department, Faculty of Technology, Badji Mokhtar University, PO Box 12, Sidi Amar 23052, Annaba, ALGERIA
autor
  • Mechanics of Materials & Plant Maintenance Research Laboratory (LR3MI), Mechanical Engineering Department, Faculty of Technology, Badji Mokhtar University, PO Box 12, Sidi Amar 23052, Annaba, ALGERIA
Bibliografia
  • [1] Mamoun M.M., Manpin J.K. and Miller M.J. (2009): Plastic pipe failure, risk, and threat analysis.– Final Report, Gas Technology Institute, 337p.
  • [2] Nguyen K.Q., Mwiseneza K., Mohamed C., Cousin P., Robert M. and Benmokrane B. (2021): Long-term testing methods for HDPE pipe: advantages and disadvantages: A review.– Engineering Fracture Mechanics, vol.246, pp.1-13, https://doi.org/10.1016/j.engfracmech.2021.107629.
  • [3] PPI, Plastic Pipe Institute (2008): Handbook of Polyethylene Pipe, 2 nd Edition, 620p.
  • [4] Zhang Y.Z., Ben Jar P.Y, Shifeng X. and Li L. (2019): Quantification of strain-induced damage in semi-crystalline polymers: A review.– Journal of Materials Science, vol.54, pp.62-82, https://doi.org/10.1016/j.engfracmech.2019.05.008.
  • [5] Chaoui K. (1989): A Theory for Accelerated Slow Crack Growth in Medium Density Polyethylene Fuel Gas Pipes.– PhD Thesis, Case Western Reserve University, Cleveland, Ohio, 179p. (DOE, OSTI 5875509).
  • [6] Favier V., Giroud T., Hiver J.M., G’Sell C., Hellinckx S. and Goldberg A. (2002): Slow crack propagation under fatigue at controlled stress intensity.– Polymer, vol.43, pp.1375-1382, https://doi.org/10.1016/S0032-3861(01)00701-7.
  • [7] Frank A., Pinter G. and Lang R.W. (2009): Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use.– Polymer Testing, vol.28, pp.737-745, https://doi.org/10.1016/j.polymertesting.2009.06.004.
  • [8] G., Xia Y., Lin C., Lin S., Meng Y. and Zhou Q. (2013): Experimental study on characterizing damage behavior of thermoplastics.– Material Design, vol.44, pp.199-207, https://doi.org/10.1016/j.matdes.2012.07.062.
  • [9] Khelif R., Chateauneuf A. and Chaoui K. (2007): Reliability-based assessment of polyethylene pipe creep lifetime.– Int. J. Pressure Vessels and Piping, vol.84, pp.697-707, https://doi.org/10.1016/j.ijpvp.2007.08.006.
  • [10] Majid F. and Elghorba M. (2019): Critical lifetime of HDPE pipes through damage and reliability models.– J. Mechanical Engineering Science, vol.13, No.3, pp.5228-5241, https://doi.org/10.15282/jmes.13.3.2019.02.0428.
  • [11] Alimi L., Chaoui K., Amirat A. and Azzouz S. (2018): Study of reliability index for HDPE based on pipe SDR and fracture toughness limits.– Int. J. Advanced Manufacturing Technology, vol.96, pp.123-136, https://doi.org/10.1007/s00170-017-1564-7.
  • [12] Chudnovsky A. (2014): Slow crack growth, its modeling and crack-layer approach: A review.– Int. J. Engineering Science, vol.83, pp.6-41, https://doi.org/10.1016/j.ijengsci.2014.05.015.
  • [13] Redhead A., Frank A. and Pinter G. (2013): Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests.– Engineering Fracture Mechanics, vol.101, pp.2-9, https://doi.org/10.1016/j.engfracmech.2012.09.022.
  • [14] Crissman J.M., Wang F.W., Guttman G.M., Mauray J.R., Fanconi B.M., and Vanderhart D.L. (1987): Reference Standard Polyethylene Resins and Piping Materials.– GRI, Final Report # 86/0070, National Bureau of Standards, Gaithersburg, MD, USA, 96p.
  • [15] Lyonnet P. (1992): La Maintenance Mathématiques et Méthodes.– 3 rd Ed., Lavoisier TEC & DOC, Paris, 363p.
  • [16] PHIMECA Engineering (1992): PHIMECA-Reliability-based design and analysis.– User’s Manual, Ver.1.6, Aubière, France.
  • [17] Dahlberg T. and Ekberg A. (2022): Failure and Fracture Fatigue-An Introduction.– Publisher Studentlitteratur, Lund, Sweden, 356p.
  • [18] Niglia A., Cisilino R., Seltzer R. and Frontini P. (2002): Determination of impact fracture toughness of polyethylene using arc-shaped specimens.– Engineering Fracture Mechanics, vol.69, pp.1391-1399, https://doi.org/10.1016/S0013-7944(02)00008-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b3728cb-0416-4f3a-9592-2050a3228e90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.