PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigation of lead-rubber dampers in chevron concentrically braced frames

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a theoretical and experimental evaluation of the application of lead rubber dampers (LRD) in the chevron bracing of structures. This device consists of a circular lead core with several layers of steel and rubber plates that are sandwiched together. This damper was manufactured at the earthquake engineering laboratory of Urmia University and installed inside a SDOF steel frame. The frame was placed on a shaking table, and its responses under several earthquake excitations were recorded. A 3D finite element model was created for the device, and hyper-elastic properties were determined for the rubber layers. To check the effectiveness of the device in mitigating the responses of multi-story frames, several nonlinear time history analyses were conducted on the structures using three earthquake excitations. The results indicate that significant reductions in the stories’ drift can be achieved by installing lead-rubber dampers in the chevron bracing.
Rocznik
Strony
162--178
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, Urmia University, Urmia, Iran
  • Department of Civil Engineering, Urmia University, Urmia, Iran
autor
  • School of Civil Engineering, University of Tehran, Tehran, Iran
autor
  • Department of Civil and Environmental Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 22012, South Korea
  • Head of Center, Incheon Disaster Prevention Research Center, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, South Korea
Bibliografia
  • [1] J.W. Hu, Response of seismically isolated steel frame buildings with sustainable lead-rubber bearing (LRB) isolator devices subjected to near-fault (NF) ground motions, Sustainability 7 (1) (2015) 111–137.
  • [2] J.W. Hu, Seismic analysis and parametric study of SDOF lead-rubber bearing (LRB) isolation systems with recentering shape memory alloy (SMA) bending bars, Journal of Mechanical Science and Technology 30 (7) (2016) 2987–2999.
  • [3] I. Mansouri, G. Ghodrati Amiri, J.W. Hu, M. Khoshkalam, S. Soori, S. Shahbazi, Seismic fragility estimates of LRB base isolated frames using performance-based design, Shock and Vibration 2017 (2017) 20.
  • [4] K. Shiba, S. Mase, Y. Yabe, K. Tamura, Active/passive vibration control systems for tall buildings, Smart Materials and Structures 7 (5) (1998) 588–598.
  • [5] T.T. Soong, G.T. Skinner, Experimental study of active structural control, Journal of Engineering Mechanics Division, ASCE 107 (6) (1981) 1057–1067.
  • [6] Y.L. Xu, J. Teng, Optimum design of active/passive control devices for tall buildings under earthquake excitation, Structural Design of Tall Buildings 11 (2) (2002) 109–127.
  • [7] K.C. Chang, T.T. Soong, M.L. Lai, E.J. Nielsen, Viscoelastic dampers as energy dissipation devices for seismic applications, Earthquake Spectra 9 (3) (1993) 371–387.
  • [8] D.K. Nims, P.J. Richter, R.E. Bachman, The use of the energy dissipating restraint for seismic hazard mitigation, Earthquake Spectra 9 (3) (1993) 467–489.
  • [9] A.G. Tarics, D. Way, J.M. Kelly, The Implementation of Base Isolation for the Foothill Communities Law and Justice Center, Report to the National Science Foundation, 1984.
  • [10] F. Naeim, J.M. Kelly, Design of Seismic Isolated Structures, John Wiley and Sons, New York, 1999.
  • [11] M.C. Constantinou, A.S. Whittaker, Y. Kalpakidis, D.M. Fenz, G.P. Warn, Performance of seismic isolation hardware under service and seismic loading, Technical report MCEER-07- 0012, Buffalo, NY, 2007.
  • [12] I.V. Kalpakidis, M.C. Constantinou, Effects of heating and load history on the behavior of lead-rubber bearings, Technical report MCEER-08-0027, Buffalo, NY, 2008.
  • [13] H.S. Monir, K. Zeynali, A modified friction damper for diagonal bracing of structures, Journal of Constructional Steel Research 87 (2013) 17–30.
  • [14] C.J. Derham, J.M. Kelly, A.G. Thomas, Nonlinear natural rubber bearings for seismic isolation, Nuclear Engineering and Design 84 (3) (1985) 417–428.
  • [15] S.T. Jenq, H.-H. Chang, Y.-S. Lai, T.-Y. Tsai, High strain rate compression behavior for Sn–37Pb eutectic alloy, lead-free Sn–1Ag–0.5Cu and Sn–3Ag–0.5Cu alloys, Microelectronics Reliability 49 (3) (2009) 310–317.
  • [16] H.-C. Tsai, S.-J. Hsueh, Mechanical properties of isolation bearings identified by a viscoelastic model, International Journal of Solids and Structures 38 (1) (2001) 53–74.
  • [17] E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids 41 (2) (1993) 389–412.
  • [18] S. Kawabata, Y. Yamashita, H. Ooyama, S. Yoshida, Mechanism of carbon-black reinforcement of rubber vulcanizate, Rubber Chemistry and Technology 68 (2) (1995).
  • [19] R.W. Ogden, D.G. Roxburgh, A pseudo-elastic model for the Mullins effect in filled rubber, in: Proceedings of the Royal Society of London, 1988, 2861–2877.
  • [20] O.H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chemistry and Technology 66 (5) (1993) 754–771.
  • [21] P. Raos, Modelling of elastic behaviour of rubber and its application in FEA, Plastics, Rubber and Composites Processing and Applications 19 (5) (1993) 293–303.
  • [22] J. Yoshida, M. Abe, Y. Fujino, Constitutive model of high-damping rubber materials, Journal of Engineering Mechanics 130 (2) (2004) 129–141.
  • [23] A.F.M.S. Amin, M.S. Alam, Y. Okui, An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification, Mechanics of Materials 34 (2) (2002) 75–95.
  • [24] F. Zhu, H. Zhang, R. Guan, S. Liu, Effects of temperature and strain rate on mechanical property of Sn96.5Ag3Cu0.5, Journal of Alloys and Compounds 438 (1–2) (2007) 100–105.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b2bca40-0a3b-4141-bed6-3dbca97d0b56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.