Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of experimental and model studies of the pressure swing adsorption (PSA) process in a column with a zeolite 13X bed with a height of 0.5 m. The gas mixture consisted of CO2 (10–20%), N2, and H2O (RH 50%) in different ratios. As a result of the column tests, concentration, and temperature evolutions were obtained for each of the adsorption and desorption stages, which were used to determine the breakthrough and bed saturation times and other parameters important for the analysis of the column operation. A mathematical model of the PSA process for the separation of CO2 from the gas mixture was developed. The system of second-order partial differential equations was solved using Matlab software. The research focuses on adsorptive CO2 capture and shows the influence of water vapor and operational parameters on the quality of model validation.
Czasopismo
Rocznik
Tom
Strony
8--15
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wz.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering Szczecin, Poland
Bibliografia
- 1. Lin, C.-C., Liu, W.-T. & Tan C.-S. (2003). Removal of carbon dioxide by adsorption in a rotating packed bed. Ind. Eng. Chem. Res. 42, 2381–2386. DOI: 10.1021/ie020669.
- 2. Ben-Mansour, R., Habib, M.A., Bamidele, O.E., Basha, M., Qasem, N.A.A., Peedikakkal, A., Laoui, T. & Ali, M. (2016). Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review. Appl. Energy 161, 225–255. DOI: 10.1016/j.apenergy.2015.10.011.
- 3. Chao, C., Deng, Y., Dewil, R., Baeyens, J. & Fan, X. (2021). Post-combustion carbon capture. Renew. Sust. Energ. Rev. 138, 110490. DOI: 10.1016/j.rser.2020.110490.
- 4. Raganati, F., Miccio, F. & Ammendola, P. (2021). Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy Fuels 35, 12845−12868. DOI: 10.1021/acs.energyfuels.1c01618.
- 5. Siqueiraa, R.M., Freitasa, G.R., Peixotoa, H.R., Nascimentob, J.F., Musseb, A.P.S., Torresa, A.E.B., Azevedoa, D.C.S. & Bastos-Netoa, B. (2017). Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114, 2182–2192.
- 6. Maring, B.J. & Webley, P.A. (2013). A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Con. 15, 16–31. DOI: 10.1016/j.ijggc.2013.01.009.
- 7. Zabielska, K., Aleksandrzak, T. & Gabruś, E. (2020). Infuence of humidity on carbon dioxide adsorption on zeolite 13X. Chem. Eng. Process 41, 197–208. DOI: 10.24425/cpe.2020.132542.
- 8. Qazvivni, O.T. & Fatemi, S. (2015). Modeling and simulation pressure-temperature swing adsorption process to remove mercaptan from humid natural gas; a commercial case study. Sep. Purif. Technol. 139, 88–103. DOI: 10.1016/j.seppur.2014.09.031.
- 9. Gholami, M., Talaie, M.R. & Aghamiri, S.F. (2016). The development of a new LDF mass transfer correlation for adsorption on fixed beds. Adsorption 22, 195–203. DOI: 10.1007/s10450-015-9730-4.
- 10. Li, S., Deng, S., Zhao, L., Zhao, R., Lin, M., Du, Y. & Lian, Y., (2018). Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study. Appl. Energy 221, 437–449. DOI: 10.1016/j.apenergy.2018.03.093.
- 11. Song, C., Kansha, Y., Fu, Q., Ishizuka, M. & Tsutsumi, A. (2016). Reducing energy consumption of advanced PTSA CO2 capture process – Experimental and numerical study. J. Taiwan Inst. Chem. Eng. 64, 69–78. DOI: 10.1016/j.jtice.2015.12.006.
- 12. Mulgundmath, V.P., Jones, R.A., Tezel, F.H. & Thibault, J. (2012). Fixed bed adsorption for the removal of carbon dioxide from nitrogen: Breakthrough behaviour and modelling for heat and mass transfer. J. Sep. Purif. 85, 17–27. DOI: 10.1016/j.seppur.2011.07.038.
- 13. Thomas, W.J. & Crittenden, B. (1998). Adsorption Technology and Design. Butterworth-Heinemann.
- 14. Chou, C.-T. & Chen, C.-Y. (2004). Carbon dioxide recovery by vacuum swing adsorption. J. Sep. Purif. 39, 51–65. DOI: 10.1016/j.seppur.2003.12.009.
- 15. Fuller, E.N., Schettler, P.D. & Giddings, J.C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58(5), 18–27. DOI: 10.1021/ie50677a007.
- 16. Ruthven, D.M., Farooq, S. & Knaebel, K.S. (1994). Pressure Swing Adsorption, VCH Publishers.
- 17. Hamdi, S., Schiesser, W. & Griffiths, G.W. (2007). Method of lines, Scholarpedia.
- 18. Schiesser, W.E. & Griffiths, G.W. (2009). A compendium of partial differential equation models. Method of Lines Analysis with Matlab. Cambridge University Press, DOI: 10.1017/CBO9780511576270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b2b8d60-ea95-4d6f-a869-a7322cd2d0a2