PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Ability of Rhizopus stolonifer MR11 to Biosynthesize Silver Nanoparticles in Response to Various Culture Media Components and Optimization of Process Parameters Required at Each Stage of Biosynthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most important roles for nanotechnology concerns is the development of optimizable experimental protocols for nanomaterials synthesis. The formation of silver nanoparticles (AgNPs) was supported by Rhizopus stolonifer MR11, which was isolated from olive oil mill soil samples. The ability of R. stolonifer MR11 to biosynthesize silver nanoparticles in response to various components of different culture media was tested. Furthermore, the conditions under which the reducing biomass filtrate was obtained, as well as the conditions of the bio-reduction reaction of AgNO3 into AgNPs, were investigated. The fungal biomass filtrate of the strain Rhizopus stolonifer MR11 was capable of converting silver nitrate into AgNPs, as evidenced by the color change of the fungal filtrates. UV-Vis spectrophotometer, TEM, Zeta potential, Zeta sizer, FT-IR, and XRD analyses were used to characterize the AgNPs. TEM analysis revealed that the silver nanoparticles were 1–35 nm in size. R. stolonifer MR11 produced the maximum AgNPs when grown for 18 hours at 36 °C in media with starch and yeast extract as the sole carbon and nitrogen sources, respectively. The reducing biomass filtrate was obtained by incubating 5 g mycelial biomass in deionized water with a pH of 6 for 48 hours at 30 °C. The optimal reduction conditions of the biosynthesis reaction were determined by adding 1.0 mM AgNO3 to a pH 5 buffered mycelial filtrate and incubating it for 72 hours at 33 °C. The current study’s findings highlighted the importance of process parameters at each stage for optimal AgNPs biosynthesis.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
  • Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
  • Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
  • Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
autor
  • Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
  • Department of Medical Analysis, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
  • Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
  • Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, 61710, Jordan
  • Department of Cosmetic Science, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
Bibliografia
  • 1. Alfarrayeh I., Fekete C., Gazdag Z., Papp G. 2021. Propolis ethanolic extract has double-face in vitro effect on the planktonic growth and biofi lm formation of some commercial probiotics. Saudi Journal of Biological Sciences, 28(1), 1033–1039.
  • 2. Alfarrayeh I., Pollák E., Czéh Á., Vida A., Das S., Papp G. 2021. Antifungal and Anti-Biofilm Effects of Caffeic Acid Phenethyl Ester on Diff erent Candida Species. Antibiotics, 10(11), 1359–1374.
  • 3. Balakumaran M.D., Ramachandran R., Kalaichelvan P.T. 2015. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiological research, 178, 9–17.
  • 4. Basavaraja S., Balaji S.D., Lagashetty A., Rajasab A.H., Venkataraman A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43(5), 1164–1170.
  • 5. Bhainsa K.C., D’souza S.F. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and surfaces B: Biointerfaces, 47(2), 160–164.
  • 6. Calderón-Jiménez B., Johnson M.E., Montoro Bustos A.R., Murphy K.E., Winchester M.R., Vega Baudrit J.R. 2017. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in chemistry, 5, 6.
  • 7. Cascio C., Geiss O., Franchini F., Ojea-Jimenez I., Rossi F., Gilliland D., Calzolai L. 2015. Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. Journal of Analytical Atomic Spectrometry, 30(6), 1255–1265.
  • 8. Colvin V.L., Schlamp M.C., Alivisatos A.P. 1994. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370(6488), 354–357.
  • 9. Dallas P., Sharma V.K., Zboril R. 2011. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 166(1–2), 119–135.
  • 10. Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57.
  • 11. Durán N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3(1), 1–7.
  • 12. Elamawi R.M., Al-Harbi R.E., Hendi A.A. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control, 28(1), 1–11.
  • 13. Fabrega J., Luoma S.N., Tyler C.R., Galloway T.S., Lead J.R. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International, 37(2), 517–531.
  • 14. García-Barrasa J., López-de-Luzuriaga J.M., Monge M. 2011. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Central European Journal of Chemistry, 9(1), 7–19.
  • 15. Gentile A., Ruffino F., Grimaldi M.G. 2016. Complex-morphology metal-based nanostructures: Fabrication, characterization, and applications. Nanomaterials, 6(6).
  • 16. Guilger-Casagrande M., de Lima R. 2019. Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in Bioengineering and Biotechnology, 7, 287.
  • 17. Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R.K., Muniyandi J., Hariharan N., Eom S.H. 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328–335.
  • 18. Ingole A.R., Thakare S.R., Khati N.T., Wankhade A.V., Burghate D.K. 2010. Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett, 7(7), 485–489.
  • 19. Jaidev L.R., Narasimha G. 2010. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 81(2), 430–433.
  • 20. Kalimuthu K., Babu R.S., Venkataraman D., Bilal M., Gurunathan S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65(1), 150–153.
  • 21. Klaus T., Joerger R., Olsson E., Granqvist C.-G. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611–13614.
  • 22. Lee S.H., Jun B.-H. 2019. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20(4), 865.
  • 23. Mukherjee P., Senapati S., Mandal D., Ahmad A., Khan M.I., Kumar R., Sastry M. 2002. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 3(5), 461–463.
  • 24. Padalia H., Moteriya P., Chanda S. 2015. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian Journal of Chemistry, 8(5), 732–741.
  • 25. Qian Y., Yu H., He D., Yang H., Wang W., Wan X., Wang L. 2013. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess and Biosystems Engineering, 36(11), 1613–1619.
  • 26. Sanghi R., Verma P. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 100(1), 501–504.
  • 27. Satalkar P., Elger B.S., Shaw D.M. 2016. Defining nano, nanotechnology and nanomedicine: why should it matter? Science and Engineering Ethics, 22(5), 1255–1276.
  • 28. Sergeev G.B., Shabatina T.I. 2008. Cryochemistry of nanometals. Colloids and Surfaces A: Physicochemical and engineering aspects, 313, 18–22.
  • 29. Singh D., Rathod V., Ninganagouda S., Hiremath J., Singh A.K., Mathew J. 2014. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorganic Chemistry and Applications, 2014.
  • 30. Singh R., Wagh P., Wadhwani S., Gaidhani S., Kumbhar A., Bellare J., Chopade B.A. 2013. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8, 4277.
  • 31. Soliman A.M., Abdel-Latif W., Shehata I.H., Fouda A., Abdo A.M., Ahmed Y.M. 2021. Green approach to overcome the resistance pattern of Candida spp. using biosynthesized silver nanoparticles fabricated by Penicillium chrysogenum F9. Biological Trace Element Research, 199(2), 800–811.
  • 32. Song J.Y., Kim B.S. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1), 79–84.
  • 33. Williams D. 2008. The relationship between biomaterials and nanotechnology. Biomaterials, 29(12), 1737–1738.
  • 34. Xu Z.P., Zeng Q.H., Lu G.Q., Yu A.B. 2006. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61(3), 1027–1040.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b2a7843-1fcd-4836-b5e1-bdf34ab4933e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.