
Opuscula Math. 35, no. 6 (2015), 867–887
http://dx.doi.org/10.7494/OpMath.2015.35.6.867 Opuscula Mathematica

INVERSION
OF THE RIEMANN-LIOUVILLE OPERATOR

AND ITS DUAL USING WAVELETS

C. Baccar, N.B. Hamadi, H. Herch, and F. Meherzi

Communicated by Semyon B. Yakubovich

Abstract. We define and study the generalized continuous wavelet transform associated
with the Riemann-Liouville operator that we use to express the new inversion formulas of the
Riemann-Liouville operator and its dual.

Keywords: inverse problem, Riemann-Liouville operator, Fourier transform, wavelets.

Mathematics Subject Classification: 35R30, 42B10, 42C40.

1. INTRODUCTION

The mean operator is defined for a continuous function f on R2, even with respect to
the first variable by

R0(f)(r, x) = 1
2π

2π∫

0

f (r sin θ, x+ r cos θ) dθ,

which means that R0(f)(r, x) is the mean value of f on the circle centered at (0, x)
and radius r. The dual operator of R0 is defined by

tR0(f)(r, x) = 1
π

∫

R

f
(√

r2 + (x− y)2, y
)
dy.

The operator R0 and its dual tR0 plays an important role and has many applications,
for example, in image processing of so-called synthetic aperture radar (SAR) data
[3, 16], or in the linearized inverse scattering problem in acoustics [7, 10].

c© AGH University of Science and Technology Press, Krakow 2015 867



868 C. Baccar, N.B. Hamadi, H. Herch, and F. Meherzi

In [4], the authors have generalized R0 and tR0 by introducing the so-called
Riemann-Liouville operator defined on the space of continuous functions on R2, even
with respect to the first variable, by

Rα(f)(r, x)

=





α

π

∫ 1

−1

1∫

−1

f
(
rs
√

1− t2, x+ rt
) (

1− t2
)α− 1

2
(
1− s2)α−1

dtds if α > 0,

1
π

1∫

−1

f
(
r
√

1− t2, x+ rt
) dt√

1− t2
if α = 0,

and its dual transform tRα, defined on Se(R2) (the space of infinitely differentiable
functions f on R2, and rapidly decreasing together with all their derivatives even with
respect to the first variable) by

tRα(f)(r, x)

=





2α
π

+∞∫

r

−
√
u2−r2∫

√
u2−r2

f(u, x+ v)(u2 − v2 − r2)α−1u du dv if α > 0,

1
π

∫

R

f(
√
r2 + (x− y)2, y)dy if α = 0.

Many harmonic analysis results related to the Riemann-Liouville operator have been
established see for example [5, 6, 14,25] and the references therein.

The description of the range and the problem of inverting the mean operator have
been studied by many authors motivated by their applications in several contemporary
domains, like mechanics, physics, medical imaging modalities using the thermoacoustic
tomography technic (TCT) and the radio frequency energy (RF) (see [1–3,10, 16, 17]).
This problem was taken forward by the authors in [4] for the Riemann-Liouville
operator and its dual. Indeed, they have proved the same results given by Ludwig,
Helgason and Solmon for the classical Radon transform on R2 [15, 21, 26] and for
the spherical mean operator in [23], more precisely they have established that the
Riemann-Liouville operator and its dual are isomorphisms on some subspaces of
Se(R2) and they have provided their inversion formulas in terms of integro-differential
operators. Herein, we invert Rα and tRα using generalized wavelets associated to the
Riemann-Liouville operator and classical wavelets (see [24,29]). These new expressions
are advantageous because of the large choice of wavelets, that are recognized as
a powerful new mathematical tool in many areas, for example signal and image
processing, time series analysis, geophysics ([8, 11–13]).

This paper is arranged as follows.
In the second section, we recall some harmonic analysis results for the Fourier

transform connected with the Riemann-Liouville operator, we also give the inversion
formulas of Rα and tRα in terms of integro-differential operators and we establish
some new results that will be useful later.
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In the third section, we define and study the generalized continuous wavelet
transform associated with the Riemann-Liouville operator. In particular, we prove
Plancherel’s and Parseval’s formulas and provide an inversion formula.

In the last section, we provide relations between the generalized continuous wavelet
transform associated to the Riemann-Liouville, the classical continuous wavelet trans-
form, the Riemann-Liouville operator and its dual that we use it to prove the main
result of this paper, that is, the expressions of R−1

α and tR−1
α using wavelet transforms.

2. THE RIEMANN-LIOUVILLE OPERATOR AND ITS DUAL

In this section, we recall some harmonic analysis results related to the Fourier transform
associated with the Riemann-Liouville operator, and we check out new results that
will be useful hereafter.

In [4], Baccar et al. have considered the function ϕµ,λ, where (µ, λ) ∈ C2, given by

ϕµ,λ(r, x) = Rα (cos (µ.) exp(−iλ.)) (r, x),

and they proved that for (µ, λ) ∈ C2

ϕµ,λ(r, x) = jα

(
r
√
µ2 + λ2

)
exp (−iλx) ,

where jα is the modified Bessel function of first kind and index α (see [9, 20, 30])
given by

jα(z) = Γ(α+ 1)
+∞∑

n=0

(−1)n
n!Γ(α+ n+ 1)

(z
2

)2n
, z ∈ C.

The function ϕµ,λ is the unique infinitely differentiable function on R2 even with
respect to the first variable satisfying





∆1u(r, x) = −iλu(r, x),
∆2u(r, x) = −µ2u(r, x),
u(0, 0) = 1, ∂u

∂r (0, x) = 0 for all x ∈ R,

where ∆1 and ∆2 are the singular partial differential operators, given by

∆1 = ∂

∂x
,

∆2 = ∂2

∂r2 + 2α+ 1
r

∂

∂r
− ∂2

∂x2 , (r, x) ∈ (0,+∞)× R, α ≥ 0.

In addition, the function ϕµ,λ is bounded on [0,+∞)× R if and only if (µ, λ) belongs
to the set

Υ = R2 ∪
{

(iµ, λ) : (µ, λ) ∈ R2, |µ| ≤ |λ|
}
.
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In this case
sup

(r,x)∈R2
|ϕµ,λ(r, x)| = 1. (2.1)

Define the measure να on [0,+∞)× R, by

dνα(r, x) = 1√
2π2αΓ(α+ 1)

r2α+1dr ⊗ dx.

The translation operators τ(r,x), (r, x) ∈ [0,+∞) × R, associated with the
Riemann-Liouville operator are defined on Lp(dνα), p ∈ [1,+∞], (the Lebesgue
space on [0,+∞)× R with respect to the measure να with the Lp-norm denoted by
‖ · ‖p,να), by

τ(r,x)(f)(s, y) = Γ(α+ 1)√
πΓ
(
α+ 1

2
)

π∫

0

f
(√

r2 + s2 + 2rs cos θ, x+ y
)

sin2α θdθ.

Then, for every f ∈ Lp(dνα), 1 ≤ p ≤ +∞ and (r, x) ∈ [0,+∞) × R, the function
τ(r,x)(f) belongs to Lp(dνα) and we have

∥∥τ(r,x)(f)
∥∥
p,να
≤ ‖f‖p,να . (2.2)

The convolution product of f, g ∈ L1(dνα) associated with the Riemann-Liouville
operator is given by

f]g(r, x) =
+∞∫

0

∫

R

τ(r,−x)(f̌)(s, y)g(s, y)dνα(s, y) for all (r, x) ∈ [0,+∞)× R,

where f̌(s, y) = f(s,−y).
The Young inequality for the convolution product “]” states that if p, q, r ∈ [1,+∞]

are such that 1/p + 1/q = 1 + 1/r, then for every functions f in Lp(dνα) and g in
Lq(dνα), f]g belongs to the space Lr(dνα) and we have

‖f]g‖r,να ≤ ‖f‖p,να‖g‖q,να .

The Fourier transform Fα associated with the Riemann-Liouville operator is
defined for f in L1(dνα) by

Fα(f)(µ, λ) =
+∞∫

0

∫

R

f(r, x)ϕµ,λ(r, x)dνα(r, x) for all (µ, λ) ∈ Υ.

Then, we have

Fα

(
τ(r,−x)(f)

)
(µ, λ) = ϕµ,λ(r, x)Fα(f)(µ, λ) for all (µ, λ) ∈ Υ. (2.3)
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Let Υ+ be the subset of Υ given by

Υ+ = ([0,+∞)× R) ∪ {(iµ, λ) : (µ, λ) ∈ R2, 0 ≤ µ ≤ |λ|}.

We define on it the σ-algebra BΥ+ = θ−1(B[0,+∞)×R), where θ is the bijective function
defined on Υ+ by

θ(µ, λ) = (
√
µ2 + λ2, λ),

and the measure γα by

γα(A) = να(θ(A)), A ∈ BΥ+ .

We denote by Lp(dγα), p ∈ [1,+∞], the Lebesgue space on Υ+ with respect to the
measure γα equipped with the Lp- norm denoted by ‖·‖p,γα . Then, for all non negative
measurable functions f on Υ+,

∫ ∫

Υ+

f(µ, λ)dγα(µ, λ) = 1
2α
√

2πΓ(α+ 1)

{ +∞∫

0

∫

R

f(µ, λ)(µ2 + λ2)αµdµdλ

+
|λ|∫

0

∫

R

f(iµ, λ)(λ2 − µ2)αµdµdλ
}
.

If f is a measurable function on [0,+∞)×R, then the function f ◦ θ is measurable on
Υ+. Furthermore, if f is a non negative or an integrable function on [0,+∞)×R with
respect to the measure να, we have

∫ ∫

Υ+

(f ◦ θ)(µ, λ)dγα(µ, λ) =
+∞∫

0

∫

R

f(r, x)dνα(r, x).

Moreover, the function f belongs to Lp(dνα) if and only if f ◦ θ belongs to Lp(dγα)
and we have

‖f ◦ θ‖p,γα = ‖f‖p,να . (2.4)

According to these notations, the following facts hold.
– For (µ, λ) ∈ Υ, we have

Fα(f)(µ, λ) = F̃α(f) ◦ θ(µ, λ), (2.5)

where F̃α is the Fourier-Bessel transform defined on L1(dνα) (see [28,29]) by

F̃α(f)(µ, λ) =
+∞∫

0

∫

R

f(r, x)jα(rµ)exp(−iλx)dνα(r, x), (µ, λ) ∈ R2.

This shows that the Fourier transform Fα is a continuous mapping from Se(R2)
into itself.
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– (Inversion formula) For every function f in L1(dνα) such that the function Fα(f)
belongs to L1(dγα), we have

f(r, x) =
∫ ∫

Υ+

Fα(f)(µ, λ)ϕµ,λ(r, x)dγα(µ, λ) a.e. (2.6)

– (Plancherel’s theorem) Since the mapping F̃α is an isometric isomorphism from
L2(dνα) onto itself, then the relations (2.4) and (2.5) show that the Fourier
transform Fα is an isometric isomorphism from L2(dνα) into L2(dγα). Namely, for
every f ∈ L2(dνα), the function Fα(f) belongs to the space L2(dγα) and we have

‖Fα(f)‖2,γα = ‖f‖2,να .

As a corollary of Plancherel’s theorem, we have the following Parseval’s formula
for Fα.
Corollary 2.1. For all functions f and g in L2(dνα), we have

+∞∫

0

∫

R

f(r, x)g(r, x)dνα(r, x) =
∫ ∫

Υ+

Fα(f)(µ, λ)Fα(g)(µ, λ)dγα(µ, λ). (2.7)

In addition, we state the following results that will be used in the next sections.
Proposition 2.2.
1. For f and g in Se(R2) (respectively f in L1(dνα) and g in L2(dνα)), we have

Fα(f]g) = Fα(f).Fα(g). (2.8)

2. Let f and g be in L2(dνα). The function f]g belongs to L2(dνα) if and only if
Fα(f).Fα(g) belongs to L2(dγα) and we have

Fα(f]g) = Fα(f).Fα(g). (2.9)

In [4], the authors have showed that the dual transform tRα maps continuously
Se(R2) into itself and that for all f in Se(R2),

Fα(f)(µ, λ) = Λα ◦ tRα(f)(µ, λ) for all (µ, λ) ∈ R2, (2.10)

where Λα is the usual Fourier transform on R2 defined by

Λα(f)(µ, λ) =
+∞∫

0

∫

R

f(r, x) cos(rµ)e−iλxdmα(r, x),

and mα the measure defined on [0,+∞)× R by

dmα(r, x) = 1√
2π2αΓ(α+ 1)

dr ⊗ dx.
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In the sequel, we use the following notations.
– We denote by Lp(dmα), 1 ≤ p ≤ +∞, the Lebesgue space on [0,+∞) × R with

respect to the measure mα equipped with the Lp-norm denoted by ‖ · ‖p,mα .
– For a function f defined on R2 even with respect to the first variable, the usual

translation operators, σ(r,x), (r, x) ∈ R2 is defined by

σ(r,x)(f)(s, y) = 1
2(f(r + s, y − x) + f(r − s, y − x)), (s, y) ∈ R2. (2.11)

– Classical convolution product “∗” is defined for functions f and g even with respect
to the first variable on R2, in L1(dmα), by

f ∗ g(r, x) =
+∞∫

0

∫

R

σ(r,x)(f̌)(s, y)g(s, y)dmα(s, y), (r, x) ∈ R2,

with f̌(s, y) = f(s,−y).
For all functions f and g in Se(R2), the function f ∗ g belongs to Se(R2) and we

have

Λα(f ∗ g) = Λα(f)Λα(g). (2.12)

Moreover, for all f and g in L2(dmα), the function f ∗ g belongs to L2(dmα) if and
only if Λα(f)Λα(g) belongs to L2(dmα) and the relation (2.12) holds.
Proposition 2.3. For f and g in Se(R2), we have

tRα(f]g) = tRα(f) ∗ tRα(g).

Proof. Since f and g are in Se(R2), we get from relations (2.8), (2.10) and (2.12)

Λα( tRα(f]g)) = Fα(f]g) = Fα(f)Fα(g)
= Λα(tRα(f))Λα(tRα(g)) = Λα(tRα(f) ∗ tRα(g)).

The result follows from the fact that Λα is an isomorphism from Se(R2) onto itself.

We denote by
– N the subspace of Se(R2) consisting of functions f satisfying

∀k ∈ N ∀x ∈ R :
(1
r

∂

∂r

)k
f(0, x) = 0,

– S 0
e (R2) the subspace of Se(R2) consisting of functions f such that

SuppF̃α(f) ⊂
{

(µ, λ) ∈ R2 : |µ| ≥ |λ|
}
,

– Se,0(R2) the subspace of Se(R2) consisting of functions f such that

∀k ∈ N∀x ∈ R :
+∞∫

0

f(r, x)r2kdr = 0.
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To palliate the fact that the dual transform tRα is not injective when applied to
Se(R2), the authors, in [4], have proved the following results.

Theorem 2.4.

1. The transform tRα is an isomorphism from S 0
e (R2) into Se,0(R2).

2. The Riemann-Liouville operator Rα is an isomorphism from Se,0(R2) into S 0
e (R2).

Lemma 2.5.

1. The mapping Λα is an isomorphism from Se,0(R2) into N .
2. The Fourier transform Fα associated with the Riemann-Liouville is an isomorphism

from S 0
e (R2) into N .

Theorem 2.6.

1. The operator K 1
α defined by

K 1
α (f)(r, x) = Λ−1

α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Λα(f)
)

(r, x) (2.13)

is an automorphism of Se,0(R2).
2. The operator K 2

α defined by

K 2
α (f)(r, x) = F−1

α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Fα(f)
)

(r, x) (2.14)

is an automorphism of S 0
e (R2).

The inversion formulas for the Riemann-Liouville operator and its dual in terms of
the integro-differential operators K 1

α and K 2
α are given by the following theorem.

Theorem 2.7.

1. For f ∈ Se,0(R2) and g ∈ S 0
e (R2), we have the inversion formula for Rα

g = RαK 1
α
tRα(g),

f = K 1
α
tRαRα(f).

2. For f ∈ Se,0(R2) and g ∈ S 0
e (R2), we have the inversion formula for tRα

f = tRαK 2
α Rα(f),

g = K 2
α Rα

tRα(g).

The following result gives a connection between the maps K 1
α and K 2

α .

Corollary 2.8. For f in S 0
e (R2), we have

K 2
α (f) = tR−1

α ◦K 1
α ◦ tRα(f).
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Proof. From relations (2.10), (2.13) and (2.14) and using the fact that the function f
belongs to S 0

e (R2), we get

K 2
α (f) = F−1

α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Fα(f)
)

= tR−1
α ◦ Λ−1

α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Λα ◦ tRα(f)
)

= tR−1
α ◦K 1

α ◦ tRα(f).

Next, we provide some properties involving the convolution products “∗” and “]”.
Proposition 2.9.
1. For every f in Se,0(R2) and g in Se(R2), the function f ∗ g belongs to Se,0(R2).
2. For every f in S 0

e (R2) and g in Se(R2), the function f]g belongs to S 0
e (R2).

Proof.
1. The result follows from the relation (2.12) and (1) of Lemma 2.5.
2. According to (1) of Theorem 2.4, the function tRα(f) belongs to Se,0(R2). Then

from (1) the convolution product tRα(f) ∗ tRα(g) is also in Se,0(R2). In virtue of
Proposition 2.3, we have

tRα(f]g) = tRα(f) ∗ tRα(g).

We deduce the result using again (1) of Theorem 2.4.
Proposition 2.10.
1. For all f ∈ Se,0(R2) and g ∈ Se(R2), we have

K 1
α (f ∗ g) = K 1

α (f) ∗ g. (2.15)

2. For all f ∈ S 0
e (R2) and g ∈ Se(R2), we have

K 2
α (f]g) = K 2

α (f)]g. (2.16)

Proof.
1. From the expression of K 1

α given by the relation (2.13) and (1) of Proposition 2.9,
we have

K 1
α (f ∗ g) = Λ−1

α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Λα(f ∗ g)
)

= Λ−1
α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Λα(f)Λα(g)
)

= Λ−1
α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Λα(f)
)
∗ g = K 1

α (f) ∗ g.

2. The proof is the same as in (1).



876 C. Baccar, N.B. Hamadi, H. Herch, and F. Meherzi

Corollary 2.11. Let f and g be in Se,0(R2). Then,

Rα(f ∗ g) = Rα(f)] tR−1
α (g). (2.17)

Proof. Since the function tR−1
α (g) belongs to the subspace S 0

e (R2), then from (2) of
Proposition 2.9 the function Rα(f)] tR−1

α (g) belongs to S 0
e (R2). Using the inversion

formula for Rα given in Theorem 2.7, Proposition 2.3 and the relation (2.15), we get

R−1
α (Rα(f)]tR−1

α (g)) = K 1
α
tRα(Rα(f)] tR−1

α (g))
= K 1

α (tRαRα(f) ∗ g) = K 1
α
tRαRα(f) ∗ g.

Thus, from Theorem 2.7 we have

R−1
α (Rα(f)] tR−1

α (g)) = f ∗ g,

and therefore
Rα(f)] tR−1

α (g) = Rα(f ∗ g).

3. CONTINUOUS WAVELET TRANSFORM ASSOCIATED
WITH THE RIEMANN-LIOUVILLE OPERATOR

In this section, we define and study the wavelets and the continuous wavelet transforms
connected with the operator Rα. Using the harmonic analysis results related to the
Fourier transform, we establish in particular an inversion formula and the Plancherel
theorem ([18,19,22]).

Let a be a positive real number. We define the dilation operator Da of a func-
tion ψ by

Da(ψ)(x, y) = 1
aα+3/2ψ

(x
a
,
y

a

)
, (x, y) ∈ C2.

– For all a, b > 0, we have Da ◦Db = Dab.
– For every a > 0, the operator Da is an isometric isomorphism from L2 (dνα) onto

itself.
Property 3.1. Denote by 〈·, ·〉να the inner product of L2 (dνα). Let a > 0. Then for
all ψ, ϕ in L2 (dνα), we have:
1. 〈Da(ψ), ϕ〉να = 〈ψ,D 1

a
(ϕ)〉να ,

2. Da(τ(r,x)(ψ)) = τ(ar,ax)(Da(ψ)),
3. Fα(Da(ψ)) = D 1

a
(Fα(ψ)).

Definition 3.2. Let ψ be a measurable function on [0,+∞)× R. We say that ψ is
a generalized admissible wavelet associated to the Riemann-Liouville operator if for
almost every (µ, λ) ∈ Υ\{(0, 0)}, we have

0 < Cψ =
+∞∫

0

∣∣∣∣Fα(ψ)
(µ
a
,
λ

a

)∣∣∣∣
2
da

a
< +∞.
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Let ψ be an admissible wavelet in Lp(dνα), 1 ≤ p ≤ +∞. For all a > 0 and (r, x) ∈
[0,+∞)× R, we define the function ψa,r,x by

ψa,r,x(s, y) = τ(r,−x)(Da(ψ))(s, y) for all (s, y) ∈ [0,+∞)× R. (3.1)

Proposition 3.3.
1. For all ψ in Lp(dνα), 1 ≤ p ≤ +∞ and for all (a, r, x) ∈ (0,+∞)× [0,+∞)× R,

the function ψa,r,x belongs to Lp(dνα), and we have

‖ψa,r,x‖p,να ≤ a
2α+3
p −(α+ 3

2 )‖ψ‖p,να . (3.2)

2. For all generalized admissible wavelets ψ in L2(dνα) and for all (a, r, x) ∈ (0,+∞)×
[0,+∞)×R, the function ψa,r,x is a generalized admissible wavelet in L2(dνα) and
we have

Cψa,r,x ≤ a2α+3Cψ.

Proof.
1. The case p = +∞ is trivial. Let 1 ≤ p < +∞. From the relation (2.2) and by a

change of variables, we get

‖ψa,r,x‖pp,να ≤
+∞∫

0

∫

R

|Da(ψ)(s, y)|pdνα(s, y) ≤ a2α+3−(α+3/2)p‖ψ‖pp,να .

2. Using (3) of Property 3.1, for all (µ, λ) ∈ Υ, we have

Fα(ψa,r,x)(µ, λ) = ϕµ,λ(r, x)Fα(Da(ψ))(µ, λ) = ϕµ,λ(r, x)aα+3/2Fα(ψ)(aµ, aλ).

Thus,
+∞∫

0

∣∣∣∣Fα(ψa,r,x)
(µ
b
,
λ

b

)∣∣∣∣
2
db

b
=

+∞∫

0

a2α+3
∣∣∣∣ϕµ

b ,
λ
b
(r, x)|2|Fα(ψ)

(a
b
µ,
a

b
λ
)∣∣∣∣

2
db

b
,

= a2α+3
+∞∫

0

|ϕ c
aµ,

c
aλ

(r, x)|2|Fα(ψ)(cµ, cλ)|2 dc
c
.

Using the relation (2.1), we get

Cψa,r,x ≤ a2α+3Cψ.

Example 3.4. Let us consider the function

ψ(r, x) = 1
2(x2 − r2 + 2α+ 1) exp

(
−r

2

2 −
x2

2

)
.

By a simple calculus, we get

Fα(ψ)(µ, λ) =
(µ2

2 + λ2
)

exp−
(µ2

2 + λ2
)
.



878 C. Baccar, N.B. Hamadi, H. Herch, and F. Meherzi

Then, for all (µ, λ) ∈ Υ \ {(0, 0)},
Cψ = 1

4 .

The function ψ is a generalized admissible wavelet associated with the Riemann-
-Liouville operator in Se(R2).

Definition 3.5. Let ψ be a generalized admissible wavelet in L2(dνα). The generalized
continuous wavelet transform Tψ associated with the Riemann-Liouville operator is
defined for a function f in Lp(dνα), p = 1, 2, and for all (a, r, x) ∈ (0,+∞)×[0,+∞)×R,
by

Tψ(f)(a, r, x) =
+∞∫

0

∫

R

f(s, y)ψa,r,x(s, y)dνα(s, y).

We have the following expressions of the transform Tψ.

1. For f in Lp(dνα), p = 1, 2,

Tψ(f)(a, r, x) = f]Da(ψ̌)(r, x). (3.3)

2. For f in L2(dνα),

Tψ(f)(a, r, x) = 〈f, ψa,r,x〉να . (3.4)

We denote by ρα the measure defined on (0,+∞)× [0,+∞)× R, by

dρα(a, r, x) = 1
a2α+4 da⊗ dνα(r, x),

and Lp(dρα), p ∈ [2,+∞], the Lebesgue space on (0,+∞)× [0,+∞)×R with respect
to the measure ρα equipped with the Lp-norm denoted by ‖ · ‖p,ρα .
Theorem 3.6. Let ψ be a generalized admissible wavelet in L2(dνα).

1. (Plancherel’s formula for Tψ) For every function f in L2 (dνα), we have

+∞∫

0

∫

R

|f(r, x)|2dνα(r, x) = 1
Cψ

+∞∫

0

+∞∫

0

∫

R

|Tψ(f)(a, r, x)|2dρα(a, r, x). (3.5)

2. (Parseval’s formula for Tψ) For all functions f and g in L2 (dνα), we have

+∞∫

0

∫

R

f(r, x)g(r, x)dνα(r, x) = 1
Cψ

+∞∫

0

+∞∫

0

∫

R

Tψ(f)(a, r, x)Tψ(g)(a, r, x)dρα(a, r, x).

(3.6)
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Proof.

1. Using relations (2.9), (3.3) and applying Plancherel’s theorem for the Fourier
transform Fα, we get

+∞∫

0

+∞∫

0

∫

R

|Tψ(f)(a, r, x)|2dρα(a, r, x)

=
+∞∫

0

+∞∫

0

∫

R

|f]Da(ψ̌)(r, x)|2dρα(a, r, x)

=
+∞∫

0

∫ ∫

Υ+

|Fα(f)(µ, λ)|2|Fα(Da(ψ))(µ, λ)|2dγα(µ, λ) da

a2α+4

=
∫ ∫

Υ+

|Fα(f)(µ, λ)|2
( +∞∫

0

|aα+ 3
2 Fα(ψ)(µa, λa)|2 da

a2α+4

)
dγα(µ, λ)

= Cψ

+∞∫

0

∫

R

|f(r, x)|2dνα(r, x).

2. We deduce the result from (1) and from the polarization identity.

Theorem 3.7. Let ψ be a generalized admissible wavelet in L2(dνα). For every
f ∈ L2 (dνα), the function Tψ(f) belongs to Lp(dρα), p ∈ [2,+∞], and we have

‖Tψ(f)‖p,ρα ≤ N(ψ)‖f‖2,να ,

where N(ψ) = (‖ψ‖22,να + Cψ) 1
2 .

Proof. For p = 2, the Plancherel’s formula for the generalized continuous wavelet
transform (3.5) gives

‖Tψ(f)‖2,ρα = C
1
2
ψ ‖f‖2,να ≤ N(ψ)‖f‖2,να .

For p = +∞, from relations (3.2) and (3.4) we have

|Tψ(f)(a, r, x)| ≤ ‖ψa,r,x‖2,να‖f‖2,να ≤ ‖ψ‖2,να‖f‖2,να ,

so

‖Tψ(f)‖∞,ρα ≤ N(ψ)‖f‖2,να .

We get the result from the Riesz-Thorin theorem ([27]).
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In the following, we establish a reconstruction and an inversion formula for Tψ.

Theorem 3.8 (Reconstruction formula). Let ψ be a positive generalized admissible
wavelet in L2(dνα). Then, for all f in L2 (dνα), we have

f(·, ·) = 1
Cψ

+∞∫

0

+∞∫

0

∫

R

Tψ(f)(a, r, x)ψa,r,x(·, ·)dρα(a, r, x)

weakly in L2(dνα).

Proof. From the relation (3.6) and Fubini’s theorem we have for all g ∈ L2 (dνα) ,

+∞∫

0

∫

R

f(r, x)g(r, x)dνα(r, x)

= 1
Cψ

+∞∫

0

+∞∫

0

∫

R

Tψ(f)(a, r, x)




+∞∫

0

∫

R

g(t, y)ψa,r,x(t, y)dνα(t, y)


 dρα(a, r, x)

=
+∞∫

0

∫

R


 1
Cψ

+∞∫

0

+∞∫

0

∫

R

Tψ(f)(a, r, x)ψa,r,x(t, y)dρα(a, r, x)


 g(t, y)dνα(t, y),

which gives the result.

Theorem 3.9. Let ψ be a generalized admissible wavelet in L2 (dνα). For all
f ∈ L1(dνα) (respectively f ∈ L2 (dνα)) such that Fα(f) ∈ L1(dγα) (respectively
Fα(f) ∈ L1(dγα) ∩ L∞(dγα)), we have

f(s, y) = 1
Cψ

+∞∫

0




+∞∫

0

∫

R

Tψ(f)(a, r, x)ψa,r,x(s, y)dνα(r, x)


 da

a2α+4 a.e.,

where both the inner and the outer integrals are absolutely convergent but possibly not
the double integral.

Proof.

1. Suppose that f ∈ L1(dνα) is such that Fα(f) ∈ L1(dγα). From the relation (3.1)
we have

Tψ(f)(a, r, x)ψa,r,x(s, y) = (f]Da(ψ̌))(r, x)τ(s,−y)Da(ψ̌)(r, x).

Then, for all a > 0 and (s, y) ∈ [0,+∞)× R, the function

(r, x) 7−→ Tψ(f)(a, r, x)ψa,r,x(s, y)
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belongs to L1(dνα), because the functions f]Da(ψ̌) and τ(s,−y)

(
Da(ψ̌)

)
clearly

belong to L2 (dνα). On the other hand, we have from the relations (2.3) and (2.8)

Fα

(
τ(s,−y)Da(ψ̌)

)
(µ, λ) = ϕµ,λ(s, y)Fα(Da(ψ̌))(µ, λ)

and

Fα(f]Da(ψ̌))(µ, λ) = Fα(f)(µ, λ)Fα(Da(ψ̌))(µ, λ)
= Fα(f)(µ, λ)Fα(Da(ψ))(µ, λ).

Thus, applying Parseval’s formula for the Fourier transform Fα given by the
relation (2.7), we get

+∞∫

0

∫

R

Tψ(f)(a, r, x)ψa,r,x(s, y)dνα(r, x)

=
+∞∫

0

∫

R

(f]Da(ψ̌))(r, x)τ(s,−y)(Da(ψ̌))(r, x)dνα(r, x)

=
∫ ∫

Υ+

ϕµ,λ(s, y)Fα(f)(µ, λ) |Fα(Da(ψ))(µ, λ)|2 dγα(µ, λ).

The relation (2.1) yields

1
Cψ

+∞∫

0

∣∣∣∣∣

+∞∫

0

∫

R

Tψ(f)(a, r, x)ψa,r,x(s, y)dνα(r, x)
∣∣∣∣∣
da

a2α+4

≤
∫ ∫

Υ+

|Fα(f)(µ, λ)|


 1
Cψ

+∞∫

0

∣∣∣∣Fα(ψ)
(µ
a
,
λ

a

)∣∣∣∣
2
da

a


 dγα(µ, λ) = ‖Fα(f)‖1,γα .

Then, by Fubini’s theorem and the inversion formula for Fα (2.6), we get

1
Cψ

+∞∫

0




+∞∫

0

∫

R

Tψ(f)(a, r, x)ψa,r,x(s, y)dνα(r, x)


 da

a2α+4

=
∫ ∫

Υ+

Fα(f)(µ, λ)ϕµ,λ(s, y)


 1
Cψ

+∞∫

0

∣∣∣∣Fα(ψ)
(µ
a
,
λ

a

)∣∣∣∣
2
da

a


 dγα(µ, λ)

=
∫ ∫

Υ+

Fα(f)(µ, λ)ϕµ,λ(s, y)dγα(µ, λ) = f(s, y) a.e.
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2. Let f ∈ L2(dνα) be such that Fα(f) ∈ L1(dγα) ∩ L∞(dγα), the function
Fα(f)Fα(Da(ψ̌)) belongs to L2 (dγα). Then from the relation (2.9) the function
f]Da(ψ̌) belongs to L2 (dνα) and we have

Fα(f]Da(ψ̌))(µ, λ) = Fα(f)(µ, λ)Fα(Da(ψ))(µ, λ).

The remainder of the proof is the same as in (1).

4. INVERSION OF Rα AND tRα USING WAVELETS

In this section, we will give the inversion formulas for the Riemann-Liouville operator
and its dual in terms of continuous wavelet transforms ([18]). We recall first some
facts for the classical wavelet transforms.

A measurable function ψ on R2 is said to be a classical admissible wavelet if for
almost every (µ, λ) ∈ R2 \ {(0, 0)}, we have

0 < Aψ =
+∞∫

0

∣∣∣∣Λα(ψ)
(µ
a
,
λ

a

)∣∣∣∣
2
da

a
< +∞. (4.1)

For a classical admissible wavelet ψ in L2(dmα), the classical continuous wavelet
transform Sψ is defined for a function f ∈ Lp(dmα), p = 1, 2, and for all (a, r, x) ∈
(0,+∞)× [0,+∞)× R by

Sψ(f)(a, r, x) =
+∞∫

0

∫

R

f(s, y)ψ̃a,r,x(s, y)dmα(s, y),

with
ψ̃a,r,x(s, y) = σ(r,x)(Ha(ψ))(s, y),

where σ(r,x) are the translation operators given by the relation (2.11) and Ha (a > 0),
is the dilation operator defined by

Ha(ψ)(r, x) = 1
a
ψ
( r
a
,
x

a

)
.

This transform can also be written in the form

Sψ(f)(a, r, x) = f ∗Ha(ψ̆)(r, x),

and have the following inversion formula

f(s, y) = 1
Aψ

+∞∫

0




+∞∫

0

∫

R

Sψ(f)(a, r, x)ψ̃a,r,x(s, y)dmα(r, x)


 da

a3 a.e. (4.2)

when f and Λα(f) are integrable on [0,+∞)× R with respect to the measure mα.
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Proposition 4.1.
1. For ψ in Se(R2), we have

tRαDa(ψ) = a2α+1Da
tRα(ψ).

2. For ψ in Se,0(R2), we have

HaK
1
α (ψ) = a2α+1K 1

αHa(ψ).

3. For ψ in S 0
e (R2), we have

DaK
2
α (ψ) = a2α+1K 2

αDa(ψ).

Proof.

1. From the relation (2.10) we have

Λα tRαDa(ψ) = FαDa(ψ) = D 1
a
Fα(ψ) = D 1

a
Λα tRα(ψ) = a2α+1ΛαDa

tRα(ψ).

The result follows from the fact that Λα is an automorphism on Se(R2).
2. From the expression of K 1

α given by the relation (2.13) we have

K 1
αHa(ψ) = Λ−1

α

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|H 1
a

Λα(ψ)
)

= a−(2α+1)Λ−1
α H 1

a

(
π

22α+1(Γ(α+ 1))2 (µ2 + λ2)α|µ|Λα(ψ)
)

= a−(2α+1)HaK
1
α (ψ).

3. The proof is the same as in (2).

Remark 4.2. According to relations (2.10), (3.2) and (4.1) we have:

1. if ψ is a generalized admissible wavelet in Se(R2), then tRα(ψ) is a classical
admissible wavelet in Se(R2) and

Cψ = A tRα(ψ),

2. if ψ belongs to Se,0(R2) such that tR−1
α (ψ) is a generalized admissible wavelet,

then ψ is a classical admissible wavelet and

CtR−1
α (ψ) = Aψ.

In the following, we provide relations between the generalized and the classical
continuous wavelet transform via the Riemann-Liouville operator and its dual.

Theorem 4.3. Let ψ be a generalized admissible wavelet in Se(R2) (respectively in
S 0
e (R2)). Then for every function f in S 0

e (R2) (respectively in Se(R2)), we have

Tψ(f)(a, r, x) = aα+ 1
2 tR−1

α

(
StRα(ψ)( tRα(f))(a, ·, ·)

)
(r, x).
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Proof. Let ψ be a generalized admissible wavelet in Se(R2) (respectively in S 0
e (R2))

and f a function in S 0
e (R2) (respectively in Se(R2)). Then from (2) of Proposition 2.9

we deduce that for all a > 0, the function

(r, x) 7→ Tψ(f)(a, r, x) = f]Da(ψ̌)(r, x)

belongs to S 0
e (R2). Using the fact that tRα is an isomorphism from S 0

e (R2) into
Se,0(R2), (1) of Remark 4.2, Proposition 4.1 and Proposition 2.3, we get

Tψ(f)(a, r, x) =t R−1
α (tRα(f]Da(ψ̌)))(r, x)

=t R−1
α (tRα(f) ∗ tRα(Da(ψ̌)))(r, x)

=t R−1
α (tRα(f) ∗ aα+ 1

2Ha(tRα(ψ̌)))(r, x)
= aα+ 1

2 tR−1
α

(
StRα(ψ)( tRα(f))(a, ·, ·)

)
(r, x).

Corollary 4.4. Let ψ be a generalized admissible wavelet in S 0
e (R2). For every f in

Se,0(R2), we have

StRα(ψ)(f)(a, r, x) = a−(α+ 1
2 )R−1

α (Tψ(Rα(f))(a, ·, ·)) (r, x). (4.3)

Proof. In the previous theorem, replacing f by Rα(f), using the relation (2.15) and
the inversion formula for tRα given in Theorem 2.7, we get the result.

Remark 4.5. The proof of the previous corollary can be established by direct calcu-
lation as follows. Let ψ be a generalized wavelet in S 0

e (R2) then, from Remark 4.2,
tRα(ψ) is a classical admissible wavelet in Se,0(R2). Using the relation (2.17) and
Proposition 4.1, for all f in Se,0(R2), we get

StRα(ψ)(f)(a, r, x) = f ∗Ha(tRα(ψ̌))(r, x)

= R−1
α (Rα(f)] a−(α+ 1

2 )Da(ψ̌))(r, x)
= a−(α+ 1

2 )R−1
α (Tψ(Rα(f))(a, ·, ·)) (r, x).

In the following theorem, we state the main results that is inversion formulas of
the Riemann-Liouville operator Rα and its dual using continuous wavelet transforms.

Theorem 4.6.

1. Let ψ be a generalized admissible wavelet in Se(R2), then for all f in Se,0(R2),
we have a.e.

tR−1
α (f)(s, y)

= 1
Cψ

+∞∫

0




+∞∫

0

∫

R

Rα

(
StRα(ψ)(K 1

α f)(a, ·, ·)
)

(r, x)ψa,r,x(s, y)dνα(r, x)


 da

aα+ 7
2
.
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2. Let ψ be a generalized admissible wavelet in S 0
e (R2), then for all f in S 0

e (R2),
we have a.e.

R−1
α (f)(s, y)

= 1
A tRα(ψ)

+∞∫

0




+∞∫

0

t∫

R

Rα(Tψ(K 2
α f)(a, ·, ·))(r, x)( ˜tRα(ψ))a,r,x(s, y)dmα(r, x)


 da

aα+ 7
2
.

Proof.

1. We get the result form the inversion formula of tRα given in Theorem 2.7, Theo-
rem 3.9, Theorem 4.3 and the relation (2.15).

2. We get the result form the inversion formula of Rα given in Theorem 2.7, relations
(4.2), (2.16) and Corollary 4.4.

Remark 4.7.

1. If ψ is a generalized admissible wavelet in S 0
e (R2) and f in Se,0(R2), then, in

virtue of Proposition 4.1, the inversion formula of the dual transform, tR−1
α (f) can

be written as
tR−1

α (f)(s, y)

= 1
Cψ

+∞∫

0




+∞∫

0

∫

R

Rα

(
SK 1

α
tRα(ψ)(f)(a, ·, ·)

)
(r, x)ψa,r,x(s, y)dνα(r, x)


 da

a3α+ 9
2
,

noting that K 1
α

tRα(ψ) is not necessarily a classical admissible wavelet.
2. Using Proposition 4.1, the expression of R−1

α (f) given in (2) of the previous theorem
can be written as follows:

R−1
α (f)(s, y)

= 1
AtRα(ψ)

+∞∫

0




+∞∫

0

∫

R

tRα(TK 2
α (ψ)(f)(a, ·, ·))( ˜tRα(ψ))a,r,x(s, y)dmα(r, x)


 da

a3α+ 9
2
.

The function K 2
α (ψ) is not necessarily a generalized admissible wavelet.
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