PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Ozone Aeration on Toxic Metal Content and Oxygen Activity in Green Waste Compost

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of work on the reduction of toxic metal content while decreasing its oxygen activity. During the study the effects of different doses of ozone in the air used for aeration of the stabilized compost in the first post-thermophilic phase were analyzed. The results showed the possibility of reducing the concentrations of toxic metals and decrease the activity of oxygen by up to 30%, compared to traditional stabilized compost aeration system without using ozone.
Słowa kluczowe
EN
Rocznik
Strony
90--94
Opis fizyczny
Bibliogr. 32 poz., tab., rys.
Twórcy
autor
  • University of Agriculture in Krakow, Department of Technical Infrastructure and Ecoenergetics Institute of Agriculture Engineering and Informatics Faculty of Production and Power Engineering, Mickiewicza Av. 21, 30-120 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, Mickiewicza Av. 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, Mickiewicza Av. 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, Mickiewicza Av. 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Amin M. M., Moazzam M. M. A. 2014. Advanced oxidation treatment of composting leachate of municipal solid waste by ozone-hydrogen peroxide. International Journal of Environmental Health Engineering, 3(1), 24–29, DOI: 10.4103/2277–9183.138415.
  • 2. Benlboukht F., Lemee L., Amir S., Ambles A., Hafidi M. 2016. Biotransformation of organic matter during composting of solid wastes from traditional tanneries by thermochemolysis coupled with gas chromatography and mass spectrometry. Ecological Engineering, 90, 87–95.
  • 3. Bundesministeriumfür Land- und Forstwirtschaft, Umwelt und Wasserwirstchaft. Wien, 2002.
  • 4. Ciesielczuk T., Kusza G. 2009. Heavy metal assessment in solid municipal wastes composts as aborder for fertilizing use. OchronaŚrodowiska i ZasobówNaturalnych, 41, 347–354.
  • 5. Fernández C., Mateu C., Moral R., Francina Sole-Mauri, Sole-Mauri F. 2016. A predictor model for the composting process on an industrial scale based on Markov processes. Environmental Modelling & Software, 79, 156–166.
  • 6. Ghisellini P., Cialani C., Ulgiati S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11–32.
  • 7. Grzesik K., Malinowski M. 2016. Life cycle assessment of refuse-derived fuel production from mixed municipal waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(21), 3150–3157, DOI: 10.1080/15567036.2015.1136976.
  • 8. Gutierez M. C., Martin M. A., Serrano A., Chica A. F. 2015. Monitoring of pile composting process of OFMSW at full scale and evaluation of odour emission impact. Journal of Environmental Management, 151, 531–539.
  • 9. Hurka M., Malinowski M. 2014. Assessment of the use of EWA bioreactor in the process of bio drying of undersize fraction manufactured from mixed municipal solid waste. Infrastructure and ecology of rural areas, IV/1/2014, 1127–1136, DOI: 10.14597/infraeco.2014.4.1.083.
  • 10. Jinyi G., Guangqun H., Jing H., Jianfei Z., Lujia H. 2016. Manure–wheat straw composting: A new approach that considers surface convection. International Journal of Heat and Mass Transfer, 97, 735–741.
  • 11. Junya Z., Meixue Ch., Qianwen S., Juan T., Chao J., Xueting L., Yuxiu Z., Yuansong W. 2016. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 91, 339–349.
  • 12. Kasiński S., Wojnowks-Baryla I. 2014. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors. Waste Management, 34(2), 316–322.
  • 13. Lebrero R., Rodríguez E., García-Encina P. A., Muñoz R. 2011. A comparative assessment of biofiltration and activated sludge diffusion for odour abatement. Journal of Hazardous Materials, 190(1–3), 622–630.
  • 14. Lian Y., Shihua Z., Zhigiang Ch., Qinxue W., Yao W. 2016. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresource Technology, 204, 185–191.
  • 15. Lima J.S., DeQueiroz J.E.G., Freitas H.B. 2004. Effect of selected and non-selected urban waste compost on the initial growth of corn. Resources, Conservation and Recycling, 42, 309–315.
  • 16. Madrid F., Lopez R., Cabrera F. 2007. Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agriculture, Ecosystems and Environment, 119, 249–256.
  • 17. Mokhtarani N., Nasiri A, Ganjidoust H., Yasrobi S. Y. 2014. Post-treatment of composting leachate by ozonation. The Journal of the International Ozone Association, 36(6), 540–548, DOI: 10.1080/01919512.2014.904737.
  • 18. Morales A. B., Bustamante M. A., Marhuenda- Egea F. C., Moral R., Ros M., Pascual J. A. 2016. Agri-food sludge management using different co-composting strategies: study of the added value of the composts obtained. Journal of Cleaner Production, 121, 186–197.
  • 19. Mukesh K. A., Akhilesh K. P., Pushpendra S. B., Wong W.C., Li R., Zengqiang Z. 2016. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresource Technology, Available online 11 February.
  • 20. PN-EN 15169:2007. Charakteryzowanie odpadów – Obliczanie suchej masy po oznaczaniu suchej pozostałości strat lub zawartości wody.
  • 21. PN-EN 13657:2006. Charakteryzowanie odpadów. Roztwarzanie do dalszego oznaczania części pierwiastków rozpuszczalnych w wodzie królewskiej.
  • 22. Puglisi E., Cappa F., Fragoulis G., Trevisan M., Re A.A.M. 2007. Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67: 548–556.
  • 23. Rotametr. 2012. Reaktor do kompostowania – typ BKB 100. Instrukcjaobsługi. Gliwice, ss. 8.
  • 24. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 czerwca 2008 r. w sprawie wykonania niektórych przepisów ustawy o nawozach i nawożeniu (Dz. U. 2008 nr 119, poz. 765)
  • 25. Siles J. A., Vargas F., Gutiérrez M. C., Chica A. F., Martín M. A. 2016. Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresource Technology, Vol. 211, 173–182.
  • 26. Ustawa o nawozach i nawożeniu (Dz. U. 2007 nr 147, poz. 1033).
  • 27. Ustawa o odpadach (Dz. U. 2013 poz. 21).
  • 28. Vandecasteele B., Sinicco T., D’Hose T., Vanden Nest T., Mondini C. 2016. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management, Vol. 168, 200–209.
  • 29. Wytyczne dotyczące wymagań dla procesów kompostowania, fermentacji i mechaniczno-biologicznego przetwarzania odpadów. 2008. MinisterstwoŚrodowiska, DepartamentGospodarkiOdpadami, Warszawa, ss. 35.
  • 30. Yongjiang W., Li P., Xinyu L., Yuansheng W., Kexun Z., Fei L. 2016. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresource Technology, Vol. 206, 164–172.
  • 31. Yuan J., Yang Q., Zhang Z., Li G., Luo W., Zhang D. 2015.Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting. Journal of Environmental Sciences, Vol. 37, 83–90.
  • 32. Yuquan W., Zimin W., Zhenyu C., Yue Z., Xinyu Z., Qian L., Xueqin W., Xu Z. 2016. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Bioresource Technology, Vol. 211, 610–617.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b295042-a7b4-467b-aaa8-484293b3f85a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.