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ABSTRACT

Purpose: Purpose of this paper is the theoretical formulation of elasto-dynamics behaviour 
of fully cracked concrete beams for two-degree of freedom (DOF) dynamical system. Such 
modelled system is demonstrated by a new class of two-DOF conservative, fully-nonlinear 
systems known as nonlinear homogeneous dynamical (NHD) systems.
Design/methodology/approach: The theoretical formulation of Two-DOF dynamical 
system has been developed by using the fundamental concept of structural analysis. 
Further, the behaviour of such class of conservative dynamical system has been concluded 
by using MATLAB.
Findings: Findings can be distinguished into two aspects. First, when subjected to service 
loads, reinforced concrete structures possess tension cracks. Due to load variation with time 
leads the breathing action (opening-closing-reopening) of existing cracks and the behaviour 
of such structures are nonlinearly-elastic. Second, such class of fully nonlinear dynamical 
system possess dependence of stiffness coefficients on nodal displacements.
Research limitations/implications: The mechanism behind such class of fully nonlinear 
dynamical system is not yet fully explored.
Practical implications: Practical implications are related to the structural response of 
fully cracked concrete beam to different earthquake excitation, especially to understand the 
response of such nonlinear homogeneous elasto-dynamical system with two-DOF concrete 
beam.
Originality/value: Elasto-dynamics of fully cracked concrete beams.
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Bilinearity ratio, Cracked concrete beams, Fixed beam
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1. Introduction 
 

During their service life, reinforced concrete structures 
are subjected to various types of loadings, such as static 
loads, introduced by dead and live loads and dynamic loads, 
introduced by earthquakes, wind, blast, impact, movement 
of vehicles, operating equipment, etc. Reinforced concrete 
structures are designed to withstand both static as well as 
dynamic loadings without any structural failure. The forcing 
function consists of sustained constant load and variable 
dynamic load which causes considerable inertial effects. The 
behaviour of reinforced concrete structures under dynamic 
loads depends on their mass along with stiffness properties, 
while the stiffness characteristics depend solely on the nodal 
load ratio. Static analysis is currently a routine practise as 
most of the codal recommendations and advance programs 
are available, whereas dynamic analysis is time consuming 
and complicated systems which required additional 
information related to system. Thus, researches are required 
to understand the dynamic structural characteristics of such 
systems for their satisfactory performance. 

The majority of the research (dynamic response) has 
been performed on simply supported beams or cantilever 
beams, which is one of the most important research gaps 
contained in the available literature. But, the fixed beam 
problem is more realistic than other type of structural 
member and the behaviour of such type of structural member 
considered as fully cracked concrete beam is not yet 
exploded. Depending upon the position of point of contra-
flexure, such class of new system is evolving with multiple 
natural frequencies. To prevent resonance, we don't consider 
such multiple natural frequencies in most of the design code. 
This paper considers the influence of configurational non-
linearity of a fixed beam due to cracking. 

The present article aims to investigate the elasto-
dynamics of two-DOF nonlinear homogeneous dynamical 
(NHD) system. The fixed concrete beams which are more 
realistic, modelled as fully cracked section to derive 
theoretical formulation of NHD system. The expressions for 
displacements and flexibility matrix coefficients were 
derived from expressions of complementary energy. 
Assuming lumped masses and without damping, the 
equations of motion have been obtained. The theoretical 
significance of the proposed conservative nonlinear 
homogeneous mechanical (NHM) system has been brought 
out in this paper.   
 
2. Literature survey  
 

All elastic and inelastic structural aspects are used in 
seismic design and study of reinforced concrete structures 

because of the high-risk potential of earthquakes. For most 
of elastic seismic design and analysis, it is assumed that 
concrete structures are linear elastic and the gross sections 
are considered for stiffness calculation without recognizing 
the presence of reinforcement and cracking. In comparison, 
nonlinear or inelastic design and research aims to integrate 
the effects of inelastic features such as reinforcement yield, 
concrete cracking, and de-bonding, etc. [1-4]. For each of 
the above dimensions, either the response spectra or the 
time-history analysis can be used to determine the structural 
response. The design seismic response spectrum is an elastic 
continuum of acceleration which is influenced by factors 
such as structural safety and simplicity of design engineers' 
implementation. By using the response spectra, the 
structural response can be calculated by knowing the natural 
time span, the damping ratio and the structure's base data. In 
contrast, the study of time-history analysis can be carried out 
by evaluating the dynamic response of concrete structures to 
site-specific site excitations of the seismic base. The elastic 
response of concrete structures so obtained can be altered by 
using the response reduction factor to integrate the effect of 
being nonlinear and inelastic [5,6]. 

The study of reinforced concrete structures is carried out 
in traditional approach by assuming that they are linear-
elastic. In this traditional approach of linear-elastic aspect 
for dynamic analysis of reinforced concrete structures, the 
member’s stiffness value is fully based on a gross concrete 
section, which thus disregards both the presence of 
reinforcement and tensile cracks that are consistent during 
working loads. The elastic response thus obtained is 
modified by the suitably applied corresponding response 
reduction factor in order to study the elasto-plastic 
behaviour. On the other hand, the concrete structures do not 
demonstrate such elasto-plastic behaviour under the action 
of earthquake of lesser intensity than that of design 
earthquake intensity. In such situations, the elastic response 
must be optimized [6-9]. 

The study of reinforced concrete structures in modern 
methodology is to forecast the behaviour of actual concrete 
structures at all times. Since the problem chosen is very 
complex, various approximations or simplification are 
added, along with several empirical constants. Therefore, the 
analysis is based on analytical, quantitative, and incremental 
approaches and it is all-inclusive in nature. Coupled elasto-
plastic-cum-damage constitutive models are in scope which 
imitates the aspect of plain concrete behaviour such as 
yielding, cracking, loss of stiffness, plastic deformations, 
hardening/softening, etc. The constitutive equations are used 
which implement the behaviour of reinforcement bars as 
well as the bond-slip interface phenomenon. Using the finite 
element paradigm, these constitutive models are 
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implemented to predict the quantitative behaviour of 
numerically defined boundary limits that are subject to 
numerically specified load backgrounds [10,11]. Contrary to 
the above mentioned theoretical continuum approach; certain 
structure-theoretical models were also developed [12].  

Concrete structures are well known to be cracked at 
isolated sections, often under service loads or even when 
exposed to moderate earthquakes. The perceptual structure 
pattern and depth of cracking will depend on the context of 
the load history. The creation and enhancement of these 
isolated flexural cracks with an increase in the loads applied 
make these concrete members nonlinear and inelastic. As 
crack forming is a nonlinear and inelastic operation, but the 
opening-closing-reopening (breathing nature) of the existing 
cracks make the concrete structures nonlinear-elastic. 
Extensive research to investigate the effect of one or more 
discreetly positioned breathing cracks on the dynamic 
behaviour of elastic beams [13-17]. On the other hand, 
concrete possess very low flexural strength. In fact, the 
presence of uncertainty complicates the actual concrete 
structures with a low tensile strength, along with the 
discernible presence of the cracks. In addition, complexity 
reaches the next level as caused by the incorporation of the 
tension stiffening effect. If the concrete is a non-tension 
solid, these complexities can be avoided. In this context, 
a static theory was proposed for these nonlinear-elastic con-
crete structures which deal with their quasi-static behaviour 
under the action of applicable loads [18]. These structures 
were known as homogeneous mechanical systems. 

Concrete structures with distinct cracks often belong to 
the same class of mechanical devices as long as no further 
cracking occurs. Despite expectations of material linearity 
and slight displacement, these concrete structures were 
found to be nonlinear-elastic. This approach simplifies the 
extremely complex problem of evaluation of dynamic 
response of discrete cracked structures. Real concrete 
structures are literally recognised as nonlinear dynamic 
MDOF systems. However, the nonlinear theory of dynamic 
systems had previously been confined primarily to SDOF 
framework as the bilinear oscillators, duffing oscillator, van 
der pol oscillator, etc [19-21]. Bilinear dynamical systems 
which had been also investigated under bilinear 
homogenous dynamical systems [22-25] and dynamic of 
hysteretic mechanical systems [26], etc whose stiffness 
depends upon the perception of vibration amplitude and the 
dynamic behaviour of such class of bilinear elastic SDOF 
homogeneous system has been observed. 

Now several more reports are documented dealing with 
nonlinear dynamic systems in MDOF. For example, two-
DOF coupled systems with a cubic force-displacement 
relationship [27-32] and a system with potential functions up 

to the degree four in the form of homogeneous polynomials 
[33]. Many sophisticated, nonlinear theory related to normal 
mode, internal resonance phenomenon and auto-parametric 
resonance were successfully developed to demonstrate the 
response under loading [27, 34-37]. Such systems modelled 
as spring and dashpot arrangements that bind together with 
lumped masses. It has been observed that the system 
behaviour is increasingly unstable and unpredictable with an 
increase in the energy component by showing sub-harmonic 
resonances, bifurcations and chaos, high frequency effects, 
etc. [36-40]. 

Currently, many dynamic nonlinear models are 
increasingly being used to track and classify concrete 
structures based on damage-based health monitoring [41]. In 
concrete beams, cracks were formed so that their normal 
vibration frequency and stiffness would decrease and the 
observed damping would increase [42,43]. Overall, the 
researchers measure the impact on the complex charac-
teristics of free and forced vibration executed by concrete 
beams of the damage in the form of cracking induced by 
prior loading. Some advanced mathematical techniques 
were developed in order to relate the observable natural 
frequency to preload, crack depth or width, deflection, etc 
[44-46]. However, due to the non-monotonic shift in the 
super-harmonic frequencies of concrete beams with 
increased damage, the efficacy of vibration-based damage 
detection is compromised [46]. Beams with breathing cracks 
(opening-closing-reopening) have been observed to reveal 
bilinear and/or nonlinear behaviour [13,15,19, 48-50]. The 
aim of the experimental investigations on dynamical 
behavior of concrete beams is to identification, 
quantification and localization of damage [44-46, 51-53].  

The authors had proposed two-DOF nonlinear dynamical 
systems as first order homogeneous dynamical (FOHD) 
systems. The proposed theory predicts the dynamical 
behaviour of the two-DOF cracked, simply supported beam 
with one side overhang concrete beam [23,54,55]. This class 
of non-linear conservative dynamic system under loads 
variation, exhibit partially linear and partially non-linear. In 
case of linear stage, system exhibit either fully in positive 
tension flexural rigidity or fully in negative tension flexural 
rigidity as the sense of loads varies. On the other hand, in 
case of nonlinear stage, system exhibit partly in positive 
tension flexural rigidity and partially in negative tension 
flexural rigidity or vice-versa, for particular sense of loads 
variation.  

As per the contemporary practice, the dynamical analysis 
involves the linear elastic analysis and elastic response 
reduction due to structural ductility [56,57]. There is a 
scarcity of investigations related to their inherent dynamical 
behaviour. Thus, in the field of structural dynamics, the 

http://www.journalamme.org
http://www.journalamme.org


Research paper8

Journal of Achievements in Materials and Manufacturing Engineering

G. Mohan, U.K. Pandey

seismic design framework dominates. In fact, non-linear 
seismic behaviour of dynamic system means elasto-plastic 
response. It was found that the system frequency or eigen 
frequency of reinforced concrete beams was found to 
decrease with the growth of crack dimensions and observed 
damping to increase [42,58]. On the other hand, there were 
no indications that the breathing action (opening-closing-
reopening of existing cracks) affects damping and that the 
decay rate of cracked beams is higher. Further reduces 
dynamic stiffness due to cracks [42].  

Non-linear theory of dynamic systems and techniques 
has not yet been implemented into common seismic non-
linear analyses. As concrete structures are cracked by 
bending tension even in service loads; the effects of cracking 
must be included in their elastic analysis process [22,24,25]. 
Despite some early studies, there is a lack of scientific study 
into the dynamic conduct of concrete structures. In view of 
this, attempts have been made to integrate the cracking 
effects and the second order effects of concrete frame lateral 
drift [59,60]. For columns in sway and non-sway cracked 
concrete frames, new slenderness limits were suggested 
[61]. Static and dynamic instability of the cracked concrete 
beam-columns has recently been studied, such as buckling, 
displacement, flutter and parametric resonances [37,62,63]. 
Nonlinear dynamic behaviour under seismic loading and 
impact-blast loading is also exploded [64,65]. 
 
 

3. Nonlinear homogeneous system 
 
3.1 Nonlinear homogeneous mechanical system 
 

Consider a fully cracked prismatic fixed beam model of 
span ‘l’, with two point loads P1 & P2 and lumped masses 
m1 & m2 at a distance 'a' from the left end support and ‘c’ 
from the right support respectively as shown in Figure 1. The 
beam is subject to small elastic displacements X1 & X2 under 
the action of loads applied P1 & P2. This fully cracked fixed 
beam displays non-linear relationships between moment and 
curvature. This means that such a modelled system has 
different stiffness coefficient values which depend on the 
sense and the relative magnitude of applied loads. 

 

 
 

Fig. 1. Representation of modelled fixed beam 

As with the fixed beam, the fixed end moment is induced 
due to externally applied loading, which is induced opposite 
to that of applied bending moment. For proportional applied 
load variations, such modelled structures exhibit fully 
nonlinear mechanical response in the form of discontinuity 
at origin in their load-displacement relationship. Thus, the 
section flexural rigidity depends upon the nature of moment, 
not on the absolute magnitude of the applied flexural 
moment. This implies that flexural rigidity distribution and 
the stiffness matrix of the beam depends upon the relative 
magnitudes and sense of the applied nodal loads.  

The beam may be in one of the following possible load 
combinations depending upon the variation in applied nodal 
loads: 
 

Condition I P1 >0, P2 >0 & P2>P1 (1) 
 

Condition II P1 >0, P2 >0 & P2=P1 (2) 
 

Condition III P1 >0, P2 >0 & P2<P1 (3) 
 

Condition IV P1 >0 & P2 =0 (4) 
 

Condition V P1 >0 & P2< 0 (5) 
 

Condition VI P1 =0 & P2> 0 (6) 
 

Condition VII P1 =0 & P2= 0 (7) 
 

Condition VIII P1 =0 & P2< 0 (8) 
 

Condition IX P1 <0 & P2 >0 (9) 
 

Condition X P1 <0 & P2=0 (10) 
 

Condition XI P1<0, P2<0 & P2<P1 (11) 
 

Condition XII P1 <0, P2 <0 & P2=P1 (12) 
 

Condition XIII P1 <0, P2 <0 & P2>P1 (13) 
 

For any specified set of load combination, the flexural 
moment distribution of this indeterminate beam can be 
easily determined. The position of the points of contra-
flexure and the corresponding stiffness coefficients of the 
given beam depend on the relative magnitude of applied 
loads to each elastically distinguished state. The points of 
the contra-flexure have different values due to differences in 
the relative magnitude of the applied loads, which makes the 
beam to be nonlinear. 

In defining the system's flexibility matrix, the following 
approach has been followed here: first, an expression for the 
complementary energy function is derived in terms of the 
nodal loads acting P1 & P2 along with incorporation of bi-
linearity ratio β. This derivation is based on the assumption 
that Clapeyron's theorem is also true for this nonlinear 
mechanical system, to be justified later. Then Castigliano’s 
theorem applies to this conservative mechanical system and 
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establishes a displacement-force relationship. The tangent 
flexibility matrix Fij expressions were finally derived 
[54,66].The breathing action (opening-closing-reopening) 
of the existing cracks during load variations renders these 
structures nonlinear-elastic. Under relative magnitude of 
applied load variations, these structures demonstrate 
nonlinear mechanical response in the form of discontinuity 
at origin in their load-displacement relationship. The typical 
values of bi-linearity ratio β which is defined as the ratio of 
the two values of flexural rigidity; of common reinforced 
concrete beams, range up to 10 [22]. In this sense, flexural 
rigidity values are assumed to be βEI and EI respectively for 
the respective segment of the beam, which is fully cracked 
at all sections under positive (sagging) and negative 
(hogging) flexural moments.  

The following expressions are determined for 
complementary energy Ω, displacements Xi and tangent 
flexibility coefficients Fij of the elastic beam: 
 

Ω � � ���
���� 𝑑𝑑𝑑𝑑

�
�  (14a) 

 

𝑋𝑋� � ��
��� (14b) 

 

&𝐹𝐹�� � ���
��� (14c) 

 

where i & j = 1, 2 and Ix is the relevant moment of inertia of 
the section. 

The nonlinear systems do not follow the theory of 
superposition. In reality, the current problem is totally 
nonlinear homogenous and dynamical system. However, in 
order to create the displacements corresponding to a specific 
set of relevant loads, the superposition principle can be 
invoked only in a computational algorithm for that particular 
nonlinear mechanical system. First, from the flexural 
moment distribution the position of the contra-flexure points 
is calculated. The beam is then expected to be linear elastic 
and change its flexural-rigidity at the above mentioned 
points of contra-flexure. Finally, the general expressions for 
Ω, Xi and Fij are obtained as functions of P1 & P2. The 
displacements can be calculated more specifically for the 
combined loads by overlaying the corresponding 
displacements of the separately applied loads P1 & P2.The 
distances s1, s2 & s3 (s3 exist only in two regions) can 
correspond to the combination of loads P1 & P2, not the 
individual loads P1 & P2. 

 
3.2 Nonlinear homogeneous dynamical system 
 

The equations of motion for the above mentioned two-
DOF modelled NHM system, considered as un-damped and 
mass-less beam are derived here. Let m1 & m2 be the lumped 

masses and F1(t) & F2(t) be the applied forces. For such 
system, the general expression for the system’s potential 
energy V, strain energy U and kinetic energy T are stated as: 
 

𝑉𝑉 �  �𝐹𝐹�𝑋𝑋� (15a) 
 

𝑈𝑈 �  �� 𝐾𝐾��𝑋𝑋�𝑋𝑋� (15b) 
 

& 𝑇𝑇 �  ��𝑚𝑚�𝑋𝑋��� (15c) 
 

where i = 1, 2 & j = 1, 2 also, Fi = applied nodal forces, Xi = 
nodal displacements, 𝑋𝑋�� = nodal velocities & Kij = stiffness 
coefficients. 

As discuss above that for NHM systems, the coefficients 
of the stiffness matrix Kij are homogeneous to nodal 
displacement of order zero. On applying Euler’s theorem, 
the expression obtained as: 
 
����
��� 𝑋𝑋� �  ������� 𝑋𝑋� � 0 (16) 
 

The rate of change of potential energy of the loads with 
respect to time and the rate of change of kinetic energy of 
the systems with respect to time are as follows: 
 

𝑉𝑉� � �𝐹𝐹�𝑋𝑋�� (17a) 
 

&𝑇𝑇� � 𝑚𝑚�𝑋𝑋��𝑋𝑋�� (17b) 
 

While, the time rate of strain energy transition is given 
below this consists of two parts: 
 

𝑈𝑈� �  𝐾𝐾��𝑋𝑋��𝑋𝑋� �  �� 𝐾𝐾���𝑋𝑋�𝑋𝑋� (18) 
 

where the second component �� 𝐾𝐾���𝑋𝑋�𝑋𝑋� is the rate of change 
of strain energy associated with the time differences in the 
stiffness coefficients.  

On expanding the second component of Eq. 18, we have: 
 

�
� 𝐾𝐾���𝑋𝑋�𝑋𝑋� �  ���� �𝑋𝑋�

����
��� � 𝑋𝑋� ������� � �  ���� �𝑋𝑋�

����
��� � 𝑋𝑋� ������� � �

 ���� �𝑋𝑋�
����
��� � 𝑋𝑋� ������� � �  ���� �𝑋𝑋�

����
��� � 𝑋𝑋� ������� � (19) 

 

By applying Eq. 16 to above equation, we get: 
 

�
� 𝐾𝐾���𝑋𝑋�𝑋𝑋� � 0 (20) 
 

Hence, the time rate of strain energy transition becomes:   
 

𝑈𝑈� �  𝐾𝐾��𝑋𝑋��𝑋𝑋� (21) 
 

Finally, we observed that there is no time rate of change 
of strain energy as the temporal fluctuation of the stiffness 
coefficients takes place. Damaged-elastic concrete modelled 
as a First Order Homogenous Mechanical (FOHM) system, 
exhibits same kind of response [67].  

Such mechanical systems obey the principle of 
conservation of energy. This means that the algebraic sum 

3.2.  Nonlinear homogeneous dynamical system
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of their rate of change of V, U and T with respect to time 
must vanish. Hence, 
 

𝑉𝑉� � 𝑈𝑈� � 𝑇𝑇� � 0 (22) 
 

On substituting the values of 𝑉𝑉� ,𝑈𝑈 � & 𝑇𝑇�  in above equation, we 
get, 
 

�𝐹𝐹�𝑋𝑋�� �  𝐾𝐾��𝑋𝑋��𝑋𝑋� � 𝑚𝑚�𝑋𝑋��𝑋𝑋�� � 0  (23a) 
 

𝑚𝑚�𝑋𝑋�� �  𝐾𝐾��𝑋𝑋� � 𝐹𝐹�   ; 𝑖𝑖&� � 1, 2  (23b) 
 

As the nodal velocities are arbitrary, equation of motion 
becomes: 
 

𝑚𝑚�𝑋𝑋�� �  𝐾𝐾��𝑋𝑋� � 𝐹𝐹��𝑡𝑡�;       𝑖𝑖 & � � 1, 2  (24) 
 

In terms of the mass matrix [M]and instantaneous stiffness 
matrix [K], the matrix equation of motion becomes: 
 

𝑀𝑀𝑋𝑋� �  𝐾𝐾𝑋𝑋 � 𝐹𝐹�𝑡𝑡�  (25) 
 

where 𝑋𝑋,𝑋𝑋� ,𝑋𝑋�  & 𝐹𝐹 represent the nodal amplitude, velocity, 
acceleration and applied force vectors respectively. 
 
 
4. Results and discussions 
 

By using the above-mentioned general approach, 
expressions for Ω, Xi and Fij can easily be derived. In order 
to demonstrate the above approach and establish a 
constitutive identity of the beam, a concrete beam with the 
following numerical, geometric and mechanical information 
has been chosen:  
 

� � 4 𝑚𝑚, � � 2 𝑚𝑚, � � 4 𝑚𝑚  &  � � 8 
 

For above specified geometrical details along with 
applied set of loading, the beam can be in any of the 
following ten elastically-distinct states: 
 

State I P1 ≥0 & P2 ≥ -0.389 P1 (26) 
 

State II P1 >0 & -0.389 P1> P2 ≥ -0.667 P1  (27) 
 

State III P1 >0 & -0.667 P1> P2 ≥ -1.5 P1  (28) 
 

State IV P1 >0 & -1.5 P1 > P2 ≥ -2.572 P1  (29) 
 

State V P1 ≥0 & P2< -2.572 P1  (30) 
 

State VI P1 <0 & P2 ≤ -0.389 P1  (31) 
 

State VII P1 <0 & -0.667 P1 ≤ P2> -0.389 P1   (32) 
 

State VIIIP1 <0 & -1.5 P1≤ P2> -0.667 P1  (33) 
 

State IX P1 <0 & -2.572 P1 ≤ P2> -1.5 P1  (34) 
 

State X P1 <0 & P2> -2.572 P1  (35) 

The obtained expressions for first two elastically distinct 
states are given in Appendix 1. For all nonlinear regions, it 
is obvious from the above that denominator disappearing 
which includes infinitely high complementary energy levels, 
nodal movements and tangent flexibility coefficients. The 
nonlinear states are characterised by the reliance of the 
positions of the points of contra-flexure on the loads applied. 
The distance s1, s2 & s3 depends, to be exact, on the load ratio 
in those states ����. 

The following mathematical forms can be restated for the 
above mentioned expressions Ω, Xi and Fij and distance s1, 
s2 & s3: 
 

Ω � 𝑃𝑃��𝑔𝑔 ������  (36a) 
 

𝑋𝑋� � 𝑃𝑃��𝑔𝑔� ������  (36b) 
 

𝐹𝐹�� � 𝑃𝑃��𝑔𝑔�� ������  (36c) 
 

& 𝑠𝑠� � 𝑃𝑃��𝑔𝑔� ������  (36d) 
 

where g, gi, gij & gs are functions of the load ratio. It should 
be noted that Ω, Xi and Fij as well as 𝑠𝑠� are functional non-
negative homogeneous of degree 2, 1, 0 & 0 respectively of 
the loads ratio ���� [12]. The present system can be defined as 
part of FOHM class. 

If Euler's theorem for homogeneous functions is 
extended respectively to Ω & 𝑋𝑋�; one is obtained: 
 
�Ω
��� 𝑃𝑃� �

�Ω
��� 𝑃𝑃� � 𝑋𝑋�𝑃𝑃� � 𝑋𝑋�𝑃𝑃� � 2Ω  (37a) 

 
���
��� 𝑃𝑃� �

���
��� 𝑃𝑃� � 𝑋𝑋�  (37b) 

 

In this class of non-linear mechanical systems, the 
validity of Clapeyron's theorem has been justified by Eq. 
(37a). For such class of homogeneous dynamical system, the 
tangent flexibility matrix 𝐹𝐹��� acts as a replacement for secant 
flexibility matrix  𝐹𝐹��� . The identity of the tangent and secant 
flexibility matrices was established, i.e., all the tangent-
secant-flexibility matrices were identified i.e. 𝐹𝐹��� � 𝐹𝐹��� . 
However, it is clear that for the entire nonlinear states, 
FOHM systems lack central symmetry in such a way that 
load inversion does not generate the same absolute energy 
values, displacement, as well as flexibility coefficients. As a 
result, flexibility matrix shows a distinct paucity in the 
passive states [12]. 

The loads P1 & P2 and displacements X1 & X2 are divided 
into 10 elastically distinct conical areas corresponding to the 
above mentioned ten defined states of the system. Such 

4. Results and discussions
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conical areas were also demonstrated by various researchers 
[20,54]. Different regions in the load-space and the displace-
ment-space are shown in Figure 2 and Figure 3 respectively. 
As stated by Eq. (26) to Eq. (35) are defined by the 10 inter-
regional boundaries between R-I & R-II, R-II& R-III, R-III 
& R-IV, R-IV & R-V, R-V & R-VI, R-VI & R-VII, R-VII 
& R-VIII, R-VIII & R-IX, R-IX & R-X and R-X & R-I. 
 

 
 

Fig. 2. Elastically-distinct regions in load space 
 

 
 

Fig. 3. Elastically-distinct regions in displacement space 
 

To summarize, the coefficients for the flexibility of the 
nodal elastic forces P1 & P2 are zero order homogeneous 
(ZOH) function, which is in turn first order homogeneous 
(FOH) function of the nodal displacement X1 & X2. ZOH 
functions of nodal displacements can also be said to be 
flexibility coefficients. The instantaneous stiffness matrix is 
derived simply as the inverse of the instantaneous flexibility 

matrix. Therefore, the stiffness coefficients are also known 
to be ZOH functions of the nodal displacements. In addition, 
complementary strain energy can be regarded as a homo-
geneous function of order two of nodal displacements. 
Under proportional loading, the load-displacement rela-
tionship is linear, so straight inter-regional boundaries of the 
load-space as well as displacement space are obtained. 

The flexibility and stiffness coefficients differ with load 
ratios as shown below in Figure 4 and Figure 5 for a unit 
load P1 acting downwards and upward respectively and the 
fluctuation in P2 is considered. There is a sudden change in 
the coefficients of flexibility and stiffness as the system 
moves from one state to another state. From the Figure 4a 
and Figure 5a it was observed that a flat horizontal line does 
not indicate that their exist a linear zone but, in such the 
variation is quite small with fluctuation in P2 which is further 
clear in Figure 4b and Figure 5b. 
 
a) 

 
b) 

 
 
Fig. 4. Variation of coefficients: P1 ≥ 0: a) flexibility, 
b) stiffness  
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a) 

 
b) 

 
 
Fig. 5. Variation of coefficients: P1< 0: a) flexibility, 
b) stiffness  
 

Other aspect is the polar angle which is defined as the 
inverse of tangent with reference to the load space ratio. 
Mathematically, Polar angle is defined as: 
 

� � tan�� ������  (38) 
 

Such coefficients profiles vary suddenly as the inter-
regional boundaries reaches. Such variation with respect to 
polar angle is plotted in the Figure 6.  

The complementary energy Ω have been observed to 
vary continuously with polar angle as shown in Figure 7. 
Authors have been observed from the Figure 7 that the peaks 
show the differences due to distinct paucity, as the system 
moves in the passive state. Similar type of behaviour has also 
been observed for modular damaged elastic concrete which 
is modelled as a FOHM system [67]. 

a) 

 
b) 

 
 
Fig. 6. Variation of coefficients with polar angle: 
a) flexibility, b) stiffness 
 

It is observed that, the damping coefficients are also a 
homogeneous function of order zero of the nodal 
displacements X1 & X2 and so of the elastic forces P1 & P2 
as that of stiffness coefficients. Ten elastically distinct 
regions in the load space and the displacement space 
correspond to different values of the damping coefficients 
Cij along with different modal frequencies ω1 & ω2 of the 
corresponding un-damped systems. Figures 8(a) and 8(b), 
respectively, display fluctuations between the positives and 
negatives of unit load 𝑃𝑃� along with fluctuation in load P2. 
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Fig. 7.Variation of energy with polar angle 
 
The constants 𝑎𝑎� & 𝑎𝑎� were calculated by taking two modal 
damping ratios into consideration, each at a value of 0.05. 
The damping coefficients and modal frequencies, like the 
flexibility and stiffness coefficients, differ continuously in 
non-linear areas and show inter-regional discontinuity. The 
entire information related to ten distinct elastically states of 
NHD system are tabulated in Appendix 2. 
 
 

5. Theoretical significance 
 

In order to understand the two-DOF nonlinear system, 
many researcher deals with the necessary expression for 
stiffness coefficient, flexibility coefficient and damping 

 coefficient which are a function of nodal amplitudes [28-35, 
68]. This paper uses the classical theory of the structures to 
evaluate a specific two-DOF cracked concrete beam to 
derive the equation of motion of the proposed NHD systems. 
NHD systems are a class of FOHD system that differs from 
non-linear homogeneous dynamical (NLHD) systems [20]. 
NLHD systems are Single-degree-of-freedom (SDOF) 
systems, which are distinguished by the division into four 
conical linear regions of the space state. The two-DOF 
systems proposed are the space for the nodal displacement 
divided into ten non-linear, dynamically conical areas. Of 
course, some preliminary results for the specific system have 
been obtained and are ready for contact with numerical 
integration techniques alone. Obviously, constructing the 
FOHD systems general theory represents an attractive area 
of research for dynamics. 

To summarize, such NHD systems are non-negative 
homogeneous function of order two, one and zero of the 
nodal displacements corresponding to strain energy, nodal 
elastic forces and instantaneous elastic coefficients respect-
tively. Such NHD systems share many features of linear 
systems, such as the validity of the Clapeyron’s theorem and 
the identity of the tangent and secant stiffness matrices. On 
the other hand, the Duffing Oscillator and van der Pol 
Oscillator are SDOF system, which depend on the stiffness 
and damping coefficients which further depends upon 
displacement amplitude respectively. The NHD systems 
suggested in this paper are two-DOF systems in which 
 

a)  b) 

  
 

Fig. 8. Variation of damping coefficients and modal frequencies: a) P1 ≥ 0, b) P1< 0 

5. Theoretical significance
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both of the stiffness and the damping coefficients are related 
to nodal displacement as ZOH functions. Thus, the NHD 
systems are not supposed to demonstrate the autonomous 
oscillation and limit cycles correlate with negative damping 
factor of van der Pol oscillator. The fixed beam problem is 
more commonly used in civil engineering and such 
behaviour of fully cracked concrete beam is not exploded. 
As, the new system is evolving with multiple natural 
frequencies depending upon the position of point of contra-
flexure. So, in most of the design code we do not consider 
such multiple natural frequency to avoid the resonance. 
 
 

6. Conclusions 
 

This paper introduces a new class of two-DOF 
conservative dynamic, fully non-linear systems known 
as NHD systems. The equation of motion has come from 
a potential function for a specific mechanical system, 
namely a classically damped cracked concrete beam which 
supports lumped masses. The tangent and secant stiffness 
matrices coefficients are the same for these systems. The 
time variance rates of the stiffness coefficients during 
motion do not affect the system response. Similar to Duffing 
and van der Pol oscillators, the NHD systems possess 
dependence of the stiffness and damping coefficients upon 
nodal displacements. The NHD systems proposed are 
believed to represent a definite contribution to the theory of 
nonlinear dynamics. It was also determined that modelled 
two-DOF fully cracked concrete beams behave as NHD 
system. The scientific validity and functional importance of 
the proposed model is of tremendous value. 
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Appendix 1 
 

The following are required expressions for the first two states that are elastically distinct: 
 
State I 
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  (A.5) 
 

𝐹𝐹�� � ��.�������.���������.����������.����������.����������.����������.����������.���������.���������
������.�������.��������.������

  (A.6) 
 

𝐹𝐹�� � ��.�������.���������.����������.����������.����������.����������.����������.���������.���������
������.�������.��������.������

  (A.7) 
 

𝐹𝐹�� � ��.�������.���������.����������.����������.����������.����������.����������.���������.���������
������.�������.��������.������

  (A.8) 

 
 
State II   
 
𝑠𝑠� �  ���.�����.����

��.������.����� &     𝑠𝑠� �  ��.������.����
��.������.�����  (A.9) 

 

� � ��.�������.���������.����������.���������.���������
��� ���.�������.��������.�����

  (A.10) 
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𝑋𝑋� � ��.�������.���������.����������.����������.���������.���������
��� ���.�������.��������.������

  (A.11) 
 

𝑋𝑋� � ��.�������.���������.����������.����������.���������.���������
��� ���.�������.��������.������

  (A.12) 
 

𝐹𝐹�� � ��.�������.���������.����������.����������.����������.����������.����������.���������.���������
��� ���.�������.��������.������

 (A.13) 

 

𝐹𝐹�� � ��.�������.���������.�����������.����������.�����������.����������.����������.���������.���������
��� ���.�������.��������.������

 (A.14) 
 

𝐹𝐹�� � ��.�������.���������.�����������.����������.�����������.����������.����������.���������.���������
��� ���.�������.��������.������

 (A.15) 
 

𝐹𝐹�� � ��.��������.���������.�����������.����������.����������.����������.����������.���������.���������
��� ���.�������.��������.������

 (A.16) 

 
Note: The expression for rest of the eight elastically distinct-states can be calculated similar to the above two states. 
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Table A1. 
System parameters for different states 

S No. 01 02 03 04 05 06 

Parameters 𝑭𝑭𝟏𝟏𝟏𝟏 
�𝒎𝒎/𝑵𝑵� 

𝑭𝑭𝟏𝟏𝟏𝟏 � 𝑭𝑭𝟏𝟏𝟏𝟏 
�𝒎𝒎/𝑵𝑵� 

𝑭𝑭𝟏𝟏𝟏𝟏 
�𝒎𝒎/𝑵𝑵� 

𝑲𝑲𝟏𝟏𝟏𝟏 
�𝑵𝑵/𝒎𝒎� 

𝑲𝑲𝟏𝟏𝟏𝟏 � 𝑲𝑲𝟏𝟏𝟏𝟏 
�𝑵𝑵/𝒎𝒎� 

𝑲𝑲𝟏𝟏𝟏𝟏 
�𝑵𝑵/𝒎𝒎� 

R-I 1.511�10-6 to 
1.554�10-6 

1.391�10-6 to 
1.410�10-6 

1.509�10-6 to 
1.605�10-6 

4.366�106 to 
2.905�106 

-4.024�106 to 
-3.202�106 

4.371�106 to 
3.437�106 

R-II 1.554�10-6 to 
1.631�10-6 

1.410�10-6 to 
1.655�10-6 

1.605�10-6 to 
2.181�10-6 

2.905�106 to 
2.781�106 

-3.202�106 to 
-2.164�106 

3.437�106 to 
2.015�106 

R-III 1.631�10-6 to 
0.755�10-6 

1.655�10-6 to 
0.845�10-6 

2.181�10-6 to 
1.312�10-6 

2.781�106 to 
4.701�106 

-2.164�106 to 
-3.015�106 

2.015�106 to 
2.693�106 

R-IV 0.755�10-6 to 
1.053�10-6 

0.845�10-6 to 
0.995�10-6 

1.312�10-6 to 
1.398�10-6 

4.701�106 to 
3.101�106 

-3.015�106 to 
-2.125�106 

2.693�106 to 
2.251�106 

R-V 1.053�10-6 to 
1.408�10-6 

0.995�10-6 to 
1.118�10-6 

1.398�10-6 to 
1.439�10-6 

3.101�106 to 
1.855�106 

-2.125�106 to 
-1.442�106 

2.251�106 to 
1.815�106 

R-VI 1.438�10-6 to 
1.395�10-6 

1.121�10-6 to 
0.991�10-6 

1.440�10-6 to 
1.334�10-6 

1.769�106 to 
1.880�106 

-1.378�106 to 
-1.540 �106 

1.767�106 to 
2.006�106 

R-VII 1.395�10-6 to 
1.335�10-6 

0.991�10-6 to 
0.875�10-6 

1.334�10-6 to 
0.799�10-6 

1.880�106 to 
2.622�106 

-1.540 �106 to 
-2.851�106 

2.006�106 to 
4.353�106 

R-VIII 1.335�10-6 to 
2.194�10-6 

0.799�10-6 to 
1.631�10-6 

0.799�10-6 to 
1.631�10-6 

2.622�106 to 
2.037� 106 

-2.851�106 to 
-2.082�106 

4.353�106 to 
2.740�106 

R-IX 2.194�10-6 to 
1.883�10-6 

1.667�10-6 to 
1.515�10-6 

1.631�10-6 to 
1.550�10-6 

2.037� 106 to 
2.401�106 

-2.082�106 to 
-2.354�106 

2.740�106  to 
2.931�106 

R-X 1.883�10-6 to 
1.541�10-6 

1.515�10-6 to 
1.395�10-6 

1.550�10-6 to 
1.509�10-6 

2.401�106 to 
3.932�106 

-2.354�106 to 
-3.630�106 

2.931�106 to 
4.013�106 
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Parameters 𝑪𝑪𝟏𝟏𝟏𝟏 
�𝑵𝑵. 𝒔𝒔/𝒎𝒎� 

𝑪𝑪𝟏𝟏𝟏𝟏 � 𝑪𝑪𝟏𝟏𝟏𝟏 
�𝑵𝑵. 𝒔𝒔/𝒎𝒎� 

𝑪𝑪𝟏𝟏𝟏𝟏 
�𝑵𝑵. 𝒔𝒔/𝒎𝒎� 

𝝎𝝎𝟏𝟏 
�𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔� 

𝝎𝝎𝟏𝟏 
�𝒓𝒓𝒓𝒓𝒓𝒓/𝒔𝒔� 

R-I 4.658�103 to 
4.352�103 

-2.875�103 to  
-2.057�103 

4.085�103 to 
3.113�103 

117.001 to  
89.225 

23.001 to  
22.047 

R-II 4.352�103 to 
3.959�103 

-2.057�103 to  
-1.979�103 

3.113�103 to 
2.805�103 

89.225 to  
86.212 

22.047 to  
22.111 

R-III 3.959�103 to 
5.401�103 

-1.979�103 to  
-2.297�103 

2.805�103 to 
3.188�103 

86.212 to  
102.002 

22.111 to  
29.276 

R-IV 5.401�103 to 
4.202�103 

-2.297�103 to  
-1.853�103 

3.188�103 to 
2.972�103 

102.002 to  
89.146 

29.276 to  
26.558 

R-V 4.202�103 to 
3.370�103 

-1.853�103 to  
-1.476�103 

2.972�103 to 
2.777�103 

89.146 to  
73.117 

26.558 to  
24.552 

R-VI 3.297�103 to 
3.281�103 

-1.433�103 to  
-1.533�103 

2.749�103 to 
2.926�103 

71.775 to  
75.860 

24.423 to  
24.646 

R-VII 3.281�103 to 
3.692�103 

-1.533�103 to  
-2.181�103 

2.926�103  to 
4.420�103 

75.860 to  
106.812 

24.646 to  
26.933 

R-VIII 3.692�103 to 
3.209�103 

-2.181�103 to  
-1.936�103 

4.420�103 to 
3.370�103 

106.812 to  
87.278 

26.933 to  
20.246 

R-IX 3.209�103 to 
3.489�103 

-1.936�103 to  
-2.058�103 

3.370�103 to 
3.455�103 

87.278 to  
92.001 

20.246 to  
21.420 

R-X 3.489�103 to 
4.446�103 

-2.058�103 to  
-2.702�103 

3.455�103 to 
3.937�103 

92.001 to  
111.432 

21.420 to  
22.898 
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